Visual Analysis of Topic Competition on Social Media

Panpan Xu¹, Yingcai Wu², Enxun Wei², Tai-Quan Peng³, Shixia Liu², Jonathan J.H. Zhu⁴, Huamin Qu¹

1 Hong Kong University of Science and Technology
2 Microsoft Research Asia
3 Nanyang Technological University
4 City University of Hong Kong
Diffusion of multiple topics

The Interaction: Do people get distracted away from some topics when something more “eye-catching” is happening?

The Influence: How do the opinion leaders (influential users) affect the interaction by recruiting the public attention for some topics?
Google Ripples [F. Viégas et al. 11]

Whisper [N. Cao et al. 12]
Agenda-setting
[M. E. McCombs and D. L. Shaw 72]

The ability of the news media (e.g. TV and newspaper) to influence the salience of topics on the public agenda.

Topic competition
[J. Zhu 92]

The addition of any new topic onto the public agenda comes at the cost of other topic(s).

Two-step information flow
[S. Wu et al. 11]

The information reaches the masses via intermediaries.

INTRO / SYSTEM / MODEL / DESIGN / CASE STUDY
Agenda-setting
[M. E. McCombs and D. L. Shaw 72]

The ability of the news media (e.g. TV and newspaper) to influence the salience of topics on the public agenda.

Topic competition
[J. Zhu 92]

The addition of any new topic onto the public agenda comes at the cost of other topic(s).

Two-step information flow
[S. Wu et.al 11]

The information reaches the masses via intermediaries.

INTRO / SYSTEM / MODEL / DESIGN / CASE STUDY
Agenda-setting
[M. E. McCombs and D. L. Shaw 72]

Topic competition
[J. Zhu 92]

Two-step information flow
[S. Wu et al. 11]

The ability of the news media (e.g. TV and newspaper) to influence the salience of topics on the public agenda.

The addition of any new topic onto the public agenda comes at the cost of other topic(s).

The information reaches the masses via intermediaries (opinion leaders).
Combine quantitative modeling and interactive visualization

Extract time varying measurements on
• topic competitiveness
• each opinion leader group’s influence on each topic
• topic transition trend of each opinion leader group

Visualize
• the dynamic relation between topics and opinion leader groups
• textual contents of the posts
Combine **quantitative modeling** and **interactive visualization**
Combine quantitative modeling and interactive visualization
Combine quantitative modeling and interactive visualization

- Time-varying topic competitiveness
- Each opinion leader group's influence
- Topic transition trend
Combine *quantitative modeling* and *interactive visualization*
Topic Competition Model for traditional media:

\[\Delta p_i^t = m_i^{t-1} \sum_{j=1, j \neq i}^k \beta_{ij} p_j^{t-1} - p_i^{t-1} \sum_{j=1, j \neq i}^k \beta_{ji} m_j^{t-1} \]

change of public attention on topic \(i \)

recruiting effect

distraction effect

[J. Zhu 92]
Topic Competition Model for traditional media:

\[
\Delta p_i^t = m_i^{t-1} \sum_{j=1, j\neq i}^k \beta_{ij} p_j^{t-1} - p_i^{t-1} \sum_{j=1, j\neq i}^k \beta_{ji} m_j^{t-1}
\]

change of public attention on topic \(i\)
media coverage on topic \(i\)
recruiting effect
population on other topic \(j\)

[J. Zhu 92]
Topic Competition Model for traditional media:

\[
\Delta p_i^t = m_i^{t-1} \sum_{j=1, j \neq i}^k \beta_{ij} p_j^{t-1} - m_i^{t-1} \sum_{j=1, j \neq i}^k \beta_{ji} m_j^{t-1}
\]

- change of public attention on topic \(i \)
- distraction effect
- population on topic \(i \)
- media coverage on other topic \(j \)

[J. Zhu 92]
The Extended Topic Competition Model:

Two step information flow

Heterogeneous influence (news media, grassroots)

\[
\Delta p_i^t = \sum_{j=1, j \neq i}^k \beta_{ij} p_{j}^{t-1} - p_i^{t-1} \sum_{j=1, j \neq i}^k \beta_{ji} m_j^{t-1} - \sum_{g=1}^n m_{i,g}^{t-1}
\]
The Extended Topic Competition Model:

Two step information flow

Heterogeneous influence (news media, grassroots)

\[p_i^t = a_i p_i^{t-1} + \sum_{g=1}^{n} m_{i,g}^{t-1} \sum_{j=1,j\neq i}^{k} \beta_{i,j,g} p_j^{t-1} - p_i^{t-1} \sum_{j=1,j\neq i}^{k} \sum_{g=1}^{n} \beta_{j,i,g} m_{j,g}^{t-1} \]

- Recruiting effect
- Distraction effect

Topic competiveness & opinion leader’s influence through \(R^2 \) decomposition
Topic Transition Estimation

Transition matrix

\[A_{k \times k} = \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix} \]

\[
\min \sum_{l} \omega_l \| m_l^{t-1} A - m_l^t \|^2 \\
\text{subject to : } \sum_{j=1}^{k} a_{ij} = 1 \text{ and } a_{ij} \geq 0
\]
Output of Analysis and Modeling Step:

Time varying **competitiveness** of each topic
Time varying **opinion leader groups’ influence** on each topic
The **topic transition trend** of the opinion leader groups between adjacent time stamps.
Topic competiveness

Timeline view
Topic competitiveness

+ Recruitment effect of different opinion leaders
+ Topic transition trend
Word cloud filterable by:
- Topic
- Time interval
- Opinion leader group

Sparkline:
- Time varying saliency of a word
Dataset:

2012 Presidential Election; 89,174,308 tweets; May 01 – Nov 10
6 general topics: welfare/society, defense/international
issues, economy, election (general), election (horse race), law/social
relations *
3 opinion leader groups: media, political figures, and grassroots *

*identified collaboratively with media researchers
Fig. 6. A long time of influence exerted by the media on the topic *election* (horse race), although with very different trending keywords.
Fig. 7. Transition of topical focus of the *media* from multiple topics to *law/social relations* around July 24th. The keyword “gun” had an increasing importance when the word clouds based on all the tweets posted by the *media* were compared before and after the transition.
Visual analysis framework:

Model the topic competition on social media, the influence of opinion leader groups, and the topic transition trends.

Visualize the results of the models and allow for further exploration to form explanations.

SUMMARY / LIMITATIONS & FUTURE WORK
Manual process to collect keywords and categorize opinion leaders more efficient ways?

Time series modeling + the structural factors of social network?

Competition & cooperation other modes of interaction among topics?
Thank You for Attention!
Table 1. Evaluation of the model against three common measures in time series data analysis shows that the model is highly effective and robust. The table shows the average and the standard deviation (in parentheses) of the measures when applying a moving window estimation for the 2012 presidential election data.

<table>
<thead>
<tr>
<th></th>
<th>Economy</th>
<th>Horse Race</th>
<th>Election General</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.98 (0.01)</td>
<td>0.98 (0.01)</td>
<td>0.99 (0.00)</td>
</tr>
<tr>
<td>se_β</td>
<td>0.02 (0.006)</td>
<td>0.02 (0.008)</td>
<td>0.02 (0.006)</td>
</tr>
<tr>
<td>DW - d</td>
<td>2.13 (0.18)</td>
<td>2.17 (0.18)</td>
<td>2.14 (0.16)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Defense / International</th>
<th>Law / Social Relations</th>
<th>Welfare & Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>R^2</td>
<td>0.97 (0.02)</td>
<td>0.96 (0.03)</td>
<td>0.95 (0.04)</td>
</tr>
<tr>
<td>se_β</td>
<td>0.02 (0.006)</td>
<td>0.01 (0.008)</td>
<td>0.02 (0.012)</td>
</tr>
<tr>
<td>DW - d</td>
<td>2.18 (0.18)</td>
<td>2.11 (0.17)</td>
<td>2.11 (0.18)</td>
</tr>
</tbody>
</table>
Data Processing

Opinion leaders: defined by number of retweets. 200 users are selected for Election data.

Keywords: collected iteratively