
10 APPENDIX

10.1 MinDL+LSH

Input: S= {S1,S2, ...,Sn}, thstart , thend , thrate
Output: C= {(P1,G1),(P2,G2), ...,(Pk,Gk)}

1 C= {(S1,{S1}),(S2,{S2}), ...,(Sn,{Sn})};
2 PriorityQueue Q= /0;
3 th = thstart ;
4 while th > thend do

/* LSH table initialization with threshold th */
5 lshInit(th);
6 for ci in C do
7 lshInsert(ci)
8 end

/* MinDL: initialization phase */
9 for ci ∈ C do

10 for c j ∈ lshQuery(ci) do
11 ∆L,c∗ = Merge(ci,c j);
12 if ∆L > 0 then
13 push (∆L,c∗,ci,c j) to Q;
14 end
15 end
16 end

/* MinDL: iterative merging phase */
17 while Q 6= /0 do
18 pop (∆L,c∗,ci,c j) from Q;
19 remove ci,c j from C, add c∗ to C;
20 cnew = c∗;

/* LSH table update */
21 lshDelete(ci), lshDelete(c j);
22 lshInsert(c∗);
23 for c ∈ lshQuery(cnew) do
24 ∆L,c∗ = Merge(c,cnew);
25 if ∆L > 0 then
26 push (∆L,c∗,c,cnew) to Q;
27 end
28 end
29 end
30 th = th× thrate;
31 end
32 return C

Algorithm 3: MDL+LSH

In the algorithm, lshInit creates a hash table for the clusters in C. Essentially the hash table is composed of a set of buckets. Each bucket
contains a set of clusters and their representative patterns are hashed to the same value. The hash table needs to be recreated when th changes. It
takes O(n) (n = ‖C‖) to populate the hash table with the clusters in C. n decreases over iterations as the clusters are merged together. lshDelete
and lshInsert update the hash table when the clusters are merged. lshQuery takes a cluster and returns all the other clusters in the same bucket.

Using LSH reduces the need to compute ∆L for all pairs of clusters in C which takes O(n2) time, instead, only pairs within the same bucket
will be considered. In this way, the method can reduce the running time significantly. This is validated by the empirical results in Fig. 3.

The three parameters thstart , thend and thrate need to be manually chosen to control the LSH threshold over iterations. In general, thstart
should be close to 1 such that fewer candidate clusters need to be checked in earlier iterations while thend should be close to 0 to make sure
the description length is effectively minimized. thrate should be a value between 0 and 1 to gradually decrease the threshold over time. We set
thstart = 0.9, thend = 0.2 and thrate = 0.6 in the experiments.

12



Online Submission ID: 260

10.2 Analytic tasks survey
Plaisant and Shneiderman [36] have recently summarized a set of high-level analytic tasks for event sequence data. We survey the existing visual
analytic systems for event sequence data and list the tasks they support in Table. 1. Besides that, we also interview the experts to gather the
requirements for the new application domain, i.e., vehicle data analytics. The analytical tasks proposed by Plaisant and Shneiderman are listed
below. From Table. 1, we identify that T1, T2, T5 and T7 are the most commonly supported tasks across a wide range of visualization systems.

Heighten awareness
• T1. Review in detail a few records.
• T2. Compile descriptive information about the dataset or a subgroup of records and events (esp. through aggregated views).
• T3. Find and describe deviations from required or expected patterns.
Prepare or select data for further study
• T4. Review data quality and inform choices to be made in order to model the data.
• T5. Identify a set of records of interest.
Understanding impact of event patterns; plan action
• T6. Compare two or more sets of records.
• T7. Study antecedents or sequelae of an event of interest.
• T8. Generate recommendations on actions to take.

Table 1. Summary of high-level tasks in previous design studies and in the new application domain, i.e., vehicle fault sequence analysis.

T1 T2 T3 T4 T5 T6 T7 T8

Lifelines2 [52] X X X

ActiviTree [49] X X X X

DecisionFlow [13] X X X

Peekquence [22] X X X

EventAction [8] X X X X X X

CoCo [30] X X X X

Frequence [34] X X

Monroe et al. [31] X X X

Liu et al. [27] X X X X

Vehicle fault sequence analysis X X X X

13



10.3 Qualitative Comparison of Data Overview
To evaluate the effectiveness of our approach, we further conduct an experiment to compare the data overview (Fig. 10) generated by EventFlow [1],
one of the state-of-the-art event sequence visualization techniques, and the data overview generated with the our approach.

In Fig. 10, the overview on the left shows the result of the VFS dataset. We can see that EventFlow can hardly group sequences and hence there
are few patterns can be identified from the overview. Compared with the result of the proposed approach (Fig. 7), we can see that our method is
better at discovering salient patterns in this noisy data, while EventFlow tends to generate fragmented results. On the other hand, by comparing
the overview on the right with the overivew in Fig. 8, the result of EventFlow can also capture visually salient patterns. The result demonstrates
that the proposed approach is particular suitable for the analysis of noisy data.

Fig. 10. The data overview generated by EventFlow [1]. Left: the result of the VFS dataset. Right: the result of the Agavue dataset.

14


	Introduction
	Related Work
	Event Sequence Visualization
	Event Sequence Mining and Visualization

	MDL for Event Sequences
	A Generic Method to Summarize Event Sequences
	The MDL Principle
	Denotations and Formal Problem Definition

	Computing MDL Representation
	Basic Algorithm
	Speedup with Locality Sensitive Hashing (LSH)
	Soft Pattern Matching

	The Visual Analytics System
	Analysis Tasks
	Event Filter
	Summary View
	Sequence View
	User Interaction

	Example Usage Scenarios
	Vehicle Fault Development Pattern Analysis for Predictive Diagnostics
	Application Log Analysis for UI Design Optimization

	Expert Interview
	Limitations and Future Work
	Conclusion
	Appendix
	MinDL+LSH
	Analytic tasks survey
	Qualitative Comparison of Data Overview


