
Sequence Synopsis: Optimize Visual Summary of
Temporal Event Data

Yuanzhe Chen, Panpan Xu and Liu Ren

Fig. 1. A screenshot of the proposed visual analytics system for event sequence data exploration. The system contains an overview (A)
which shows a set of sequential patterns that can best summarize the entire dataset based on the Minimum Description Length (MDL)
principle. It also supports level-of-detail exploration (A.0→ A.1). A tabular display (B) shows the detailed information of the sequences
linked with the summary view. Two panels (C and D) support data filtering. The event filter (C) shows the co-occurrence of events with
a focus event at the center and allows users to select a set of highly correlated events. The sequence filter (D) supports sequence
filtering based on their attribute values. The usage scenario in this figure is described in Section. 6.

Abstract— Event sequences analysis plays an important role in many application domains such as customer behavior analysis,
electronic health record analysis and vehicle fault diagnosis. Real-world event sequence data is often noisy and complex with high
event cardinality, making it a challenging task to construct concise yet comprehensive overviews for such data. In this paper, we
propose a novel visualization technique based on the minimum description length (MDL) principle to construct a coarse-level overview
of event sequence data while balancing the information loss in it. The method addresses a fundamental trade-off in visualization design:
reducing visual clutter vs. increasing the information content in a visualization. The method enables simultaneous sequence clustering
and pattern extraction and is highly tolerant to noises such as missing or additional events in the data. Based on this approach we
propose a visual analytics framework with multiple levels-of-detail to facilitate interactive data exploration. We demonstrate the usability
and effectiveness of our approach through case studies with two real-world datasets. One dataset showcases a new application
domain for event sequence visualization, i.e., fault development path analysis in vehicles for predictive maintenance. We also discuss
the strengths and limitations of the proposed method based on user feedback.

Index Terms—Time Series Data, Data Transformation and Representation, Visual Knowledge Representation, Visual Analytics

1 INTRODUCTION

Event sequence data, i.e., multiple series of timestamped or ordered
events, is increasingly common in a wide range of domains. Website

Yuanzhe Chen is with Hong Kong University of Science and Technology.
E-mail: ychench@ust.hk. Panpan Xu and Liu Ren are with Bosch Research
North America, Palo Alto, CA. E-mail: panpan.xu, liu.ren@us.bosch.com.
This work was done while Yuanzhe Chen was an intern at Bosch Research
North America, Palo Alto, CA.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

click streams, user interaction logs in software applications, electronic
health records (EHRs) in medical care and vehicle error logs in
automotive industry can all be modeled as event sequences. It is
crucial to reason about and derive insights from such data for effective
decision making in these domains. For example, by analyzing vehicle
error logs, typical fault development paths can be identified, which
can inform better strategies to prevent the faults from occurring or
alert drivers in advance, and therefore improve driver experience and
reduce warranty cost. Similarly, by analyzing users’ interaction log
with software applications, usability issues and user behavior patterns
can be identified to inform better designs of the interface.

With the growing importance of event sequence analysis, a
variety of visualization techniques have been proposed in the past
years [5, 8, 9, 15, 23, 29, 33, 36, 41, 43, 52, 54, 55, 57, 60]. Recent



solutions further integrate sequential pattern mining (SPM) or sequence
clustering techniques to facilitate sequential pattern identification from
large and complex real-world data [21, 24, 26, 32, 48, 53].

However, despite great progress, it still remains a challenging task
to create intuitive, simple, yet comprehensive overviews for real-world
event sequence data. Methods such as Sankey diagrams [54] can not ef-
fectively handle noisy data with high event cardinality. SPM algorithms
generate a long list of potentially redundant patterns and the analysts
have to rely on certain interestingness metrics to prune or rank them in
the visualization, which may result in partial coverage of the data and
leave out some insights [21, 26, 32]. Visualization techniques based on
sequence clustering can give an overview of the data [48, 53]. However
the algorithms can produce clusters that are difficult to interpret.

In this paper, we describe a novel event sequence visualization
technique using an information-theoretic approach. The goal is to
construct a coarse-level overview of the data with a good balance
between the simplicity of the visual representation and its information
content. The approach we propose is based on a two-part representation
of the data which consists of a set of sequential patterns and a set of
corrections. The original sequences are mapped to the patterns and
the corrections part specifies the edits (e.g., insertions and deletions
of events) needed to transform the patterns to the individual sequences.
The two-part representation can be regarded as a lossless compression
of the data: the original sequences can always be fully recovered with
the corresponding patterns and corrections.

Given a two-part representation, we visually summarize the original
data with the sequential patterns and in the meanwhile model the
information loss in the visualization with the corrections part. The
challenge is to identify a set of patterns for a concise visual summary
without introducing significant information loss. To tackle this
challenge, we introduce the minimum description length (MDL)
principle [13, 14]. The MDL principle is a general criterion for model
selection in inductive inference which trades off between 1) the
complexity of the model and 2) the description length of the original
data with the help of the model. It aligns inherently with what we are
trying to achieve with the overview, considering 1) the set of sequential
patterns is the model and 2) the corrections describe the original data
in combination with the set of patterns.

We develop efficient algorithms to identify a set of sequential pat-
terns for optimized visual summary of data based on the MDL principle.
The method supports simultaneous pattern extraction and sequence
clustering. Since the method only imposes ‘soft’ pattern matching
constraints [11], it is highly robust to handle noisy data with missing or
additional events. Furthermore, it is also a generic framework that can
incorporate various editing operations (e.g., swapping the positions of
adjacent events). We further design a visual analytics system to support
level-of-detail exploration of event sequence data with the identified
patterns. We apply the method to two real-world datasets. One dataset
showcases a new application domain for event sequence visualization,
i.e., fault development path analysis in vehicles for predictive
diagnostics. Another is a public dataset containing user interaction
logs with a visualization tool [10]. It has been released to provide a
common basis for evaluating event sequence visualization techniques.

To summarize, the main contribution of this work include:
• A generic two-part representation of event sequences consisting of

a set of sequential patterns and a set of corrections. In combination
with the MDL principle, the patterns can be used to construct
informative overviews of data.

• Efficient algorithms to identify an optimal set of patterns to sum-
marize the data based on the MDL principle.

• A visual analytics system that supports level-of-detail exploration
of event sequence data.

• Case studies with real-world datasets and expert interviews which
demonstrate the usability and effectiveness of the approach.

2 RELATED WORK

2.1 Event Sequence Visualization
There is a large variety of event sequence visualization techniques.
One straightforward approach is placing events or event episodes along

a horizontal time axis as in Lifelines [33], CloudLines [20] and TimeS-
lice [59]. The method can reveal detailed information of each event.
However, identifying temporal patterns in multiple sequences can be
difficult for the substantial cognitive load to scan them simultaneously.

To tackle this issue, many visualization and interaction techniques
have been proposed in the recent years. Lifelines2 [51] summarizes
the frequency of events in different temporal granularities to help
spot trends over time. EventFlow [29, 55], TrailExplorer [40, 41] and
CoreFlow [25] extract and visualize tree-like branching structures
from event sequence data. Lu et al. [27] extracts the sentiment trend
of events as time series and visualizes them with stacked area charts.
Outflow [54], CareFlow [31], DecisionFlow [12] and commercial
products such as Google Analytics [1] condense event sequences into
transition graphs where nodes represent events at different stages and
edges connect successive events in the sequences. The graphs are
usually visualized as Sankey diagrams to show the common transition
pathways. A more recent approach, MatrixWave [60], uses matrix
based visualization to display the graph, in order to avoid visual clutter
caused by dense edges in Sankey diagrams.

Interaction is an essential part for event sequence data analysis.
(S|qu)eries [58], COQUITO [19] and DecisionFlow [12] provide visual
query interfaces to help users select a subset of sequences for focused
analysis. Lifelines2 [50, 51] supports interactive alignment of data on
selected events that the users can easily spot precursor, co-occurring,
and aftereffect events. Wongsuphasawat and Shneiderman [56] and Du
et al. [7] propose techniques for users to select a sequence and identify
those similar to it based on certain distance metrics. Recently, Du et
al. [8] also compiles a series of strategies for analyzing large datasets.

The techniques provide powerful analytic support for temporal
pattern analysis. We also adopt existing interaction techniques in our
system such as interactive alignment on selected events. However,
with increased volume and complexity of the datasets, these techniques
will have limited capability. Sankey diagram will suffer from visual
clutter with an increasing number of transition paths. Visual query
interfaces for reducing data volume and complexity can not provide
full overview of the data and the analysts could miss important insights.
We present an information-theoretic approach for event sequences
summarization. The method reduces the visual clutter in the overview
and in the meanwhile minimize the information loss in it. This allows
analysts to identify salient patterns even within noisy and complex
datasets. We further propose a novel visual representation that not only
shows the sequential patterns, but also hints on the information missing
from the display to guide the users in detail-on-demand exploration.

2.2 Event Sequence Mining and Visualization
Recently, an increasing number of visualization systems apply data
mining techniques for event sequence data analysis.

SPM based methods applies frequency-based sequence mining
algorithms and uses the identified patterns to guide event sequence
data exploration. FP-Viz [44] is one of the early works that visualize
the mined results with Sunburst visualization. TimeStitch [35] use the
results of SPM models to help users discover, construct and compare
cohorts in medical care data. Both Frequence [32] and Peekquence [21]
directly visualize mined patterns to help users understand the data. Liu
et al. [26] proposes a three-stage analytics pipeline to explore the pat-
terns and sequences. The pipeline includes a pattern pruning algorithm
which can filter redundant patterns mined from SPM models. Besides
using automatic mining algorithms for patterns discovery, Vrotsou
et al. [47] proposes an interactive approach for sequential pattern
mining and visualization. SPM algorithms can generate large amount
of patterns and the analysts usually need to rely on certain thresholds or
interestingness metrics to make the result manageable and presentable.
This may result in missing insights since the trimmed patterns can only
give a partial view of the data. In comparison, our method gives an
overview of the data by aggregating event sequences and identify the
representative sequential pattern for each aggregated group.

Sequence clustering based techniques aggregates the data for an
overview. LogView [28] uses treemaps to visualize the hierarchical
clustering results while the sequential information is not directly



Fig. 2. An example two-part representation of multiple event sequences consists of 1) a set of patterns and 2) a set of corrections which can recover
the original sequences from the corresponding patterns by inserting (+) or deleting (-) events. In the visual summary, the height of the rectangles is
proportional to the number of sequences containing the corresponding event. Triangular glyphs encode the number of event insertions. Note that this
is a lossy representation of the original data: it is not possible to recover the original sequences without detailed information about each edit. The
size of the triangle glyphs and the height of the rectangles visually indicate the amount of information loss.

displayed. Cadez et al. [3] separates and visualizes sequences into
different clusters for comparison. Wang et al. [48] uses unsupervised
clustering on clickstream data and use packed circles to show the
cluster hierarchy. Wei et al. [53] uses a self-organizing map to cluster
and visualize clickstream data. However, the users still need to look at
the original unaggregated data to understand why they form groups and
verify the results. Our method supports simultaneous pattern extraction
and sequence clustering. Each event sequence cluster is characterized
with a representative sequential pattern which can greatly facilitate
interpretation of the grouping results.

The MDL principle has been applied to construct [17] and evalu-
ate [4] data models for event sequence analysis in data mining research.
Our method combines the MDL principle with event data visualization
by introducing a novel two-part representation and the corresponding
algorithms to identify an optimal visual abstraction of the data.

3 MDL FOR EVENT SEQUENCES

A high-level overview often plays a critical role in explorative data
analysis, as emphasized in the well-known visual information seeking
mantra “overview first, zoom and filter, details on demand” [42] and
manifested in the design of numerous visualization systems. For event
sequence data, an overview can serve as a starting point for descriptive
analysis [34] and help users identify interesting patterns or subsets of
data that are worth further exploration.

3.1 A Generic Method to Summarize Event Sequences
Our approach to visually summarize multiple event sequences is
based on a two-part representation of the original data. The two-part
representation consists of a set of sequential patterns and a set of
corrections. Each event sequence is mapped to a pattern and the
corrections specify the edits needed to transform the pattern to the
original sequence. The edits may include insertion or deletion of
events from the pattern. Fig. 2 gives an example. It shows six event
sequences {S1,S2, ...,S6} together with the corresponding patterns and
corrections. There are two sequential patterns P1 and P2. The original
sequences can be reconstructed from either P1 or P2 by removing (-) or
adding (+) events. For instance, S2 can be recovered from P1 by adding
event A while S3 can be recovered from P1 by adding event E. S4 can be
recovered from pattern P2 by removing event E and inserting event C.
S1 is exactly the same as pattern P1, therefore no correction is needed.

The intuition of this two-part representation is to exploit the
similarity of event sequences and identify a set of sequential patterns
that can give a concise visual summary of the data. In the example
in Fig. 2, P1 and P2 can roughly characterize the six sequences by
representing {S1,S2,S3} and {S4,S5,S6} respectively. This is common
in many application scenarios. For example, a series of interdependent
faults can happen in the same sequential manner in multiple vehicles.
Visitors of a commerce website may follow a similar sequence of
pages to complete their orders.

The corrections part, on the other hand, specifies the information
loss if the original data is visually represented by the sequential

patterns. To reduce information loss, more elaborated patterns can be
introduced. For example, in Fig. 2, the information loss can be reduced
by mapping S4 to a new pattern [A, B, C] instead of P2. However, such
changes can increase the visual complexity of the overview with more
patterns to be displayed. The extreme case is when each individual
sequence is treated as a pattern: there is no information loss, however
severe visual clutter could occur when plotting all the sequences in
a single visualization, making it much more challenging to identify
high-level patterns. Essentially, we need to consider a trade-off
between the readability of the visualization and the completeness of
the information communicated through it.

3.2 The MDL Principle
We introduce the MDL principle [13, 14] to identify a set of sequential
patterns for an overview of the data while balancing the information
loss in it. MDL is a well known information criterion for statistical
model selection. It has been adopted for constructing optimized layout
of hierarchical visualizations [45]. The MDL principle basically states
that the best model for a dataset results in minimized description length
of it. Like most authors, we apply the more ‘practical’ or crude version
of MDL instead of the ideal MDL. The ideal MDL tries to find the
shortest program in a general-purpose computer language that can print
the data. On the other hand, in the crude version, the description length
of a dataset is composed of two parts: (a) the encoding of the model
L(M) and (b) the encoding of the data with the help of the model
L(D|M). The best model M̂ should minimize the total description
length, which is L(M)+L(D|M).

For event sequences, we consider the sequential patterns as the
model. The original sequences are coded by specifying the edits to the
corresponding patterns. The total description length is the sum of the
pattern lengths and the corrections length. The best set of sequential
patterns that represents the original data should minimize the sum.

The MDL principle applied in this scenario is directly connected to
the goal we intend to achieve in the overview. Simplifying the overview
which shows the sequential patterns corresponds to minimizing L(M),
whereas L(D|M), the corrections length, is added to the objective
function to penalize the information loss in it.

3.3 Denotations and Formal Problem Definition
Now we start to introduce the denotations and formally define the
description length of the two-part representation. An event sequence
is an ordered list of events S = [e1,e2, ...,en] where ei ∈ Ω, an event
alphabet. Given a set of event sequences S = {S1,S2, ...,Sm}, the
goal is to identify a set of patterns P = {P|P = [e1,e2, ...,el ]} and a
mapping f : S→ P from the event sequences to the patterns that can
minimize the total description length:

L(P, f ) = ∑
P∈P

L(P)+ ∑
S∈S

L(S| f (S)) (1)

In this equation, L(P) is the description length of pattern P
and L(S| f (S)) is the description length of S given its pattern f (S).



Considering that 1) a pattern can be described by simply listing the
events in it1 and 2) an edit can be fully specified by the position and
the event involved and its description length can be roughly treated
as a constant, Eqn. 1 can be rewritten as:

L(P, f ) = ∑
P∈P

len(P)+α ∑
S∈S
‖edits(S, f (S))‖+λ‖P‖ (2)

where len(P) is the number of events in the pattern and edits(S, f (S))
is a set of edits that can transform f (S) to S. We further introduce the
parameter α in Eqn. 2 to control the importance of minimizing infor-
mation loss over reducing visual clutter in the overview, following the
practice used by Veras and Collins [46]. The third term with the parame-
ter λ is added to directly control the total number of patterns. Increasing
λ will reduce the number of patterns in the optimized result. Therefore
the scalability of the overview can be improved by setting λ properly.

The mapping f clusters the event sequences: sequences mapped
to the same pattern can be considered as in the same cluster. We denote
a cluster as a tuple c = (P,G) where G = {S|S ∈ S∧ f (S) = P} is the
set of sequences mapped to pattern P. We denote the set of tuples
for all the clusters as C = {(P1,G1),(P2,G2), ...,(Pk,Gk)}, where
{G1,G2, ...,Gk} forms a partition of S. Therefore finding f̂ and P̂ that
minimize L(P, f ) is equivalent to finding Ĉ that minimize L(C):

L(C) = ∑
(P,G)∈C

len(P)+α ∑
(P,G)∈C

∑
S∈G
‖edits(S,P)‖+λ‖C‖ (3)

To summarize, our goal is to identify a partition/grouping of the
sequences and a representative pattern for each group that can minimize
the total description length. Conceptually it seems to be similar to
sequence clustering algorithms. However the other methods do not
follow an information-theoretic approach. Furthermore, the patterns
can give an interpretable coarse-level summary of the original data,
which is not possible with the existing sequence clustering techniques.

4 COMPUTING MDL REPRESENTATION

We introduce the algorithm to identify a grouping of the sequences and
a representative pattern for each group that minimize L(C) in Eqn. 3.

4.1 Basic Algorithm
We now present our first algorithm called MinDL. Since the optimiza-
tion problem itself entails a rather large search space, we adopt a
heuristic approach using a bottom up strategy. Initially, each sequence
starts in its own cluster and is treated as a sequential pattern by itself.
Starting from that, we iteratively merge pairs of clusters and compute
the representative sequential patterns for the new clusters. The merges
are determined in a greedy manner: the algorithm always choose
to combine the pair that leads to the maximum description length
reduction in each iteration. The algorithm stops when it can no longer
find a pair to further reduce L.

MinDL is described formally in Algorithm 1. The algorithm is
subdivided into two phases - Initialization and Iterative merging. In
the Initialization phase, C is set to contain all the sequences in S as
individual clusters. The algorithm then computes the description length
reduction ∆L for all the pairs in C and uses a standard priority queue
Q to store the pairs with a positive ∆L. With that the algorithm can
efficiently retrieve the pair with the maximum ∆L in constant time. The
subroutine Merge in line 4 returns not only ∆L by merging ci and c j,
but also c∗ = (P∗,Gi∪G j) where P∗ is the optimal sequential pattern
for the merged group which minimizes the description length for the
sequences in Gi ∪G j. c∗ is stored together with ∆L and (ci,c j) in Q
to avoid recomputation.

1In this work, minimizing the description length is not an end goal, but a
means to extract meaningful sequential patterns for a succinct visual display.
Therefore we do not use compression schemes such as Huffman coding [38] to
shorten the code lengths for the events and we consider the events are described
with a constant length code. Same for encoding the edits.

Input: sequences S= {S1,S2, ...,Sn}
Output: pattern and cluster tuples

C= {(P1,G1),(P2,G2), ...,(Pk,Gk)}
/* Initialization phase */

1 C= {(P,G)|P = S,G = {S} for all S ∈ S};
2 PriorityQueue Q = /0;
3 for all pairs ci,c j ∈ C and i 6= j do
4 ∆L,c∗ = Merge(ci,c j);
5 if ∆L > 0 then
6 insert (∆L,c∗,ci,c j) into Q;
7 end
8 end
/* Iterative merging phase */

9 while Q 6= /0 do
10 retrieve (∆L,c∗,ci,c j) from Q with the largest ∆L;
11 cnew = c∗;
12 remove ci,c j from C, add cnew to C;
13 remove all pairs containing ci or c j from Q;
14 for c ∈ C− cnew do
15 ∆L,c∗ = Merge(c,cnew);
16 if ∆L > 0 then
17 insert (∆L,c∗,c,cnew) into Q;
18 end
19 end
20 end
21 return C

Algorithm 1: MinDL

In the Iterative merging phase, the algorithm picks the pair (ci,c j)
with the maximum ∆L from Q. It updates C by removing ci, c j and
inserting c∗. Q is updated by adding new pairs of clusters containing
c∗ with a positive ∆L. This process is repeated until Q is empty. The
remaining tuples in C specify a grouping of the sequences along with
the representative patterns which give an optimized description length
of the original data.

The core subroutine in MinDL is Merge, which appears in line 4
and line 15. It is described in Algorithm. 2. Merge calculates the
cost reduction ∆L when combining a pair of clusters ci = (Pi,Gi) and
c j = (Pj,G j). It also returns the sequential pattern P∗ after merging.
The algorithm initializes P∗ as the Longest Common Subsequence
(LCS) of Pi and Pj and iteratively add the remaining events in Pi and
Pj to it, starting from those that appear most frequently in Gi and G j.
The iteration stops when ∆L no longer increases or is less than 0. The
intuition behind this procedure is that the pattern P∗ should be a mixture
of Pi and Pj. Starting from the LCS of Pi and Pj can greatly reduce
the efforts needed to build the sequential pattern P∗ from scratch.

The function edits in line 7 calculates the minimum number of edits
that can transform a pattern P to a sequence S. Different types of edits
can be supported in the algorithm, given that the minimum number
of edits are computed accordingly. For example, if we allow missing
or additional events in the pattern, the minimum number of edits can
be obtained by computing the LCS distance between P and S. Adding
event substitution into the available types of edits, we get Levenstein
distance. The algorithm can support even more editing types such
as swapping the positions of adjacent events. In this paper we mostly
consider event insertion and deletion as the available editing operations.
In Section 4.3 we use an example to illustrate how swapping adjacent
events can be supported in the same framework.

4.2 Speedup with Locality Sensitive Hashing (LSH)

An analysis on the time complexity of MinDL shows that it can be
quite time consuming even for a moderate amount of data. Given n
event sequences, the MinDL algorithm runs the subroutine Merge for
O(n2) times to calculate ∆L for all pairs of clusters. The subroutine
Merge itself has a time complexity of O(kmd2), where m is the number
of sequences in the combined cluster, k is the number of iterations
in the pattern buildup phase (line 5-13 in Algorithm. 2) and d is the



Fig. 3. Algorithm performance comparison on two real-world datasets, vehicle fault sequences (VFS) and Agavue [10]. We sample the Agavue
dataset to create test data with different number of sequences. We run algorithms on a PC with 2.5GHz Intel dual-core i5 CPU with 4GB RAM. The
algorithms are implemented in Python except that HAC in scikit-learn and weighted LSH in datasketch use external C libraries.

Input: ci = (Pi,Gi),c j = (Pj,G j)
Output: ∆L and c∗ = (P∗,Gi∪G j) by merging ci and c j
/* Initialization phase */

1 init pattern P∗ = P = LCS(Pi,Pj);
2 candidate events Ec = Pi−P∪Pj−P;
3 sort Ec by frequency in desc order;
4 ∆L =−1;
/* Pattern buildup phase */

5 for e in Ec do
6 P = Add(P,e);
7 ∆L′ = len(Pi)+ len(Pj)− len(P)+α ∑S∈Gi

edits(S,Pi)+
α ∑S∈G j

edits(S,Pj)−α ∑S∈Gi∪G j
edits(S,P)+λ ;

8 if ∆L′ < 0 or ∆L′ < ∆L then
9 break;

10 else
11 ∆L = ∆L′, P∗ = P;
12 end
13 end
14 return ∆L,c∗ = (P∗,Gi∪G j)

Algorithm 2: Merge

average length of the sequences. We assume the minimum number
of edits can be computed efficiently through dynamic programming,
hence the time complexity of computing edits is O(d2).

To tackle this challenge, we propose a fast randomized approxima-
tion algorithm utilizing Locality Sensitive Hashing (LSH) [22]. The
intuition of this approach is that pairs of sequences/patterns which
share very few common events or no common event at all (regardless
of the order) can be skipped when searching for candidate pairs to
merge. If we can design a method that can quickly filter out such pairs,
the times of calling function Merge, the most time consuming routine,
can be significantly reduced.

Based on this observation, we integrate weighted LSH [16] into
the MinDL algorithm. Weighted LSH takes a predefined threshold
th within the range (0.0,1.0) as a parameter. If two multisets have a
weighted Jaccard similarity larger than th, they will have the same hash
value with a sufficiently high probability. We use weighted LSH to
quickly identify pairs of sequences/patterns with similar sets of events
regardless of their exact order. This allows us to prioritize the clusters
when searching for candidates to merge.

When applying LSH, a higher threshold th can filter out more
candidates and make the algorithm faster. However, the risk of missing
potential candidates also becomes higher. We follow the strategy pro-
posed by Koga et al. [18] and run MinDL for multiple iterations while
gradually decreasing th. In the first few runs, we use higher th so each
time fewer pairs need to be checked in MinDL. To ensure no possible
merge is missed due to the usage of LSH, we gradually decrease the
threshold in the later runs such that more candidate pairs could be
considered. Since the number of clusters decreases quickly during the
first few runs, this method still can significantly reduce the running time.
In this work, the threshold setting is guided by the experimental result.

The MinDL+LSH algorithm is described in detail in the Appendix.

Fig. 4. Change of the description length (L(C)) over time as MinDL and
MinDL+LSH progress, tested on the Agavue dataset. L(C) is normalized
with its initial value when each sequence is treated as an individual
pattern.

Fig. 5. An example sequence cluster where events may have different
orders when compared to the pattern. By adding transposition operation
in possible edits, the algorithm allows small perturbations in event order.

We conduct experiments to evaluate the effectiveness of the
speedup strategy on two datasets, vehicle fault sequences (VFS)
and Agavue [10]. Detailed information of the two datasets are
described in Section. 6. Some basic statistics about the datasets and
the experimental results are displayed in Fig. 3. It can be observed
that we can reduce 95% to 99% running time of MinDL with the
help of LSH. We also test the running time of a standard clustering
algorithm Hierarchical Agglomerative Clustering (HAC) and a SPM
algorithm [49]. For fair comparison, we use editing distance as the
metric in the HAC algorithm, and use the minimum cluster size in our
MinDL algorithm as the support threshold in the SPM algorithm. From
the result, we can observe that MinDL+LSH is much faster than both
HAC and SPM, especially when number of sequences becomes larger.

Fig. 4 compares MinDL and MinDL+LSH. It shows how the total
description length L decreases over time as the two algorithms progress.
Besides the dramatic difference in the decreasing speed, we also
observe that the resulted description length is similar for the two



algorithms. This means that the two algorithms can achieve similar
optimization results. To further validate this conclusion, we also
compare the clustering results before and after embedding LSH with
the Adjusted Rand Index (ARI). ARI is a common metric to compare
clustering results. It ranges from -1 to 1 where 0 means random clus-
tering and 1 means identical results. An ARI larger than 0.5 means that
the results are very similar [39]. Fig. 3 shows that all the results have
an ARI larger than 0.5. Therefore, we can safely conclude that adding
LSH does not have significant negative effect on the clustering results.

4.3 Soft Pattern Matching
In the algorithm, the individual sequences may deviate from the
patterns with missing or additional events, given that they do not
add too much to the corrections part. Therefore the method is quite
robust to noises, common in real-world data. The algorithm is also
generic and can support more editing operations such as swapping the
positions of adjacent events, thus allowing small perturbations in event
order. Fig. 5 shows an example when we include insertion, deletion
and transposition between two successive events as the possible edits.
In the algorithm, the minimum number of edits can be determined
by following the method to calculate the Damerau-Levenshtein
distance [2]. Fig. 5 shows that the events in the patterns appear in the
individual sequences in different order.

5 THE VISUAL ANALYTICS SYSTEM

5.1 Analysis Tasks
In a recent paper, Plaisant and Shneiderman [34] summarize a set of
high-level analytic tasks for event sequence data. To identify the most
common tasks across various application domains in order to design
a generic tool for event sequence analysis, we survey design studies
for different kinds of data (e.g., website click streams and EHR data)
and gather requirements from experts in vehicle data analytics, the new
application domain we introduce in this paper. Table. 1 (Appendix)
summarizes the result of the survey and the expert interview. We con-
clude the four high level tasks T1, T2, T5, T7 to be the most common
ones and centered our design around these tasks. The four tasks are:

T1. Review in detail a few records.
T2. Compile descriptive information about the dataset or a subgroup
of records and events (esp. through aggregated views).
T5. Identify a set of records of interest.
T7. Study antecedents or sequelae of an event of interest.

We design the system to support the aforementioned tasks while
following the general guideline of showing multiple levels of
detail [42]. Starting from an overview of the sequential patterns (T2),
the analyst can identify a subset for further investigation (T1). The
analyst can also filter records by their attribute values or filter events by
their co-occurrences (T1, T2, T5). The system also supports interactive
alignment on a selected event to study its causes and effects (T7).

5.2 Event Filter
The event filter (Fig. 1 (C)) shows the events’ co-occurrences in the
sequences and allows users to select a few highly interdependent ones
for further study. Similar to the design by Chuang et al. [6], we show
explicitly the co-occurrence of all the events with a focus event in the
visualization. The co-occurrence is measured by Jaccard Index and is
encoded as the radial distances to the focus event at the center of the
display. The analyst can change the focus interactively and the distances
will change accordingly. The sizes of the circles represent how frequent
the events occur overall. The events are arranged around the circle based
on their category. The radial angles separate different categories of
events as in [6]. The categorical labels are displayed along the sectors.

The color of the cirle encode the type of the event. Using color to
encode event type is a common practice in event sequence visualization
[26, 29]. It is also proved as relatively effective in a recent study [37].
The color encoding is shared across multiple views for consistency.

In the visualization, events that frequently co-occur with the focus
event are close to the center. The analyst can use a lasso tool to select
a set of highly relevant events and focus on the sequential patterns
containing those events.

An alternative way to visualize the events’ interdependency is
Multidimensional Scaling(MDS), which can project the events to a 2D
plane based on their co-occurrences. We use the radial design to show
undistorted distances to a focus event. By observing the radial distance
to the center, users can easily estimate the frequency of co-occurrence
between any event and the focus event. Compared with the MDS
layout, it can display more accurate and interpretable information to
the analysts. Besides that, the radial layout is also suitable when the
analyst wants to focus on a particular type of event.

5.3 Summary View

In the summary view (Fig. 1 (A)), we vertically list all the sequential
patterns identified by the algorithm. Each pattern represents a cluster
of sequences. For each pattern, we layout the events from left to right
and display them as rectangles. The color of the rectangles encodes
the type of the event.

Besides displaying the sequentially ordered events in the patterns,
the summary view also shows the number of edits in the corrections
part. Fig. 2 illustrates the visual encoding in the summary view. Trian-
gular glyphs are placed between adjacent events or at the beginning/end
of the pattern. Their sizes are proportional to the number of insertions
at the corresponding position, accumulated over all the sequences in
the cluster. The height of the rectangles is proportional to the number
of sequences containing the corresponding event in the pattern. It
implicitly shows the deletions as the ‘missing’ parts compared to the
others. The event insertions and deletions are obtained by backtracking
the dynamic programming algorithm which computes the minimum
editing distances between the individual sequences and the patterns.

The design itself is simple in the sense that at most
O(∑(P,G)∈C len(P)) visual elements appears in it (counting the
rectangles and triangles). It is a lossy representation of the original data
since detailed information of each edit is missing and it is not possible
to recover all the original sequences with this visual representation.
The sizes of the triangles and the heights of the rectangles visually
indicate the amount of information loss. This design also helps viewers
identify clusters with high/low intra-cluster similarity, which can guide
them to a more detailed exploration of the data. For example, Fig. 1
(A.0 → A.1) shows how the user can expand a triangle and get a
summary view of the subsequences in it. One potential drawback of
this design is that missing events are not explicitly encoded. In certain
application scenarios (e.g. EHR data analysis), missing events may
also need to be highlighted with additional visual cues.

5.4 Sequence View

The sequence view (Fig. 1 (B)) organizes the detailed information of
each record in a tabular form. The attribute values and the original
event sequences are displayed. The events are placed along a horizontal
axis. Each event is represented by a glyph. The events matched in
the patterns are displayed in larger sizes. Event sequences in the same
cluster are placed together.

5.5 User Interaction

User interactions are designed to support the exploration of event
sequence data. We summarize the interactions into three categories.

Basic interactions. Filtering, tooltip and linked-highlighting are
the three basic interactions supported in our system. The system
support two types of filtering. First, as mentioned in Section 5.2, users
can filter events with the lasso selection tool in the event filter (Fig. 1
(C)). The analysts can also filter the sequences through the attribute
values as shown in Fig. 1 (D). Note that the event filter will always
be updated accordingly to reflect the co-occurrences of events in the
filtered sequences in Fig. 1 (D). The filtering function is especially
helpful when the analysts have prior knowledge about what kind of
sequences or events worth further analysis. A tooltip is designed to
show the detailed description of each event when analysts hover over
any event in the system. Furthermore, linked-highlighting is supported
to help users associate the information displayed in the detailed view
(Fig. 1 (B)) with the summary view (Fig. 1 (A)). When users click and



highlight patterns in the summary view, individual sequences in the
detailed view will be ordered and highlighted accordingly.

Detail on demand. As mentioned in Section 5.3, inserted events
are aggregated and visualized as triangular glyphs in the summary
view. However, users may still want to examine the details, especially
when the size of the glyphs indicate that there are many inserted events.
In the prototype, the users can double click the glyphs to expand them
for detailed analysis. To be more specific, since the inserted events
are also a set of subsequences, we apply the same summarization
approach in Section 4 to these subsequences and show a set of patterns
and corrections in the expanded view. Fig. 1 (A.0→ A.1) shows an
example of such expansion.

Temporal relation exploration. To support efficient temporal
relation exploration, we allow users to align sequences at a selected
event. By default, the sequences in summary view and the detail view
are aligned at the first event. Users can select one event in the summary
view and both views will be aligned to the selected event through
animated transition. Fig. 1 (A, B) shows an example where the events
are aligned at the event ‘gh’. In this way, users can easily identify
subsequences occur before and after a given event. Besides, the
horizontal scale in the detailed view can be changed to show accurate
temporal information instead of only sequential orders. By changing
the scale, the users can analyze the temporal distribution of events.
Users can also combine alignment and changing the horizontal scale
in the system. In this way, they can easily observe the how other events
distribute with respect to a selected event. Fig. 6 shows an example.

The system also has other interactive features such as reordering
the patterns in the summary view. The analyst can sort the sequential
patterns by 1) the number of sequences in the corresponding cluster
and 2) the similarity between the patterns measured through the editing
distance. To reorder by similarity, we first perform a hierarchical
clustering of the patterns and then sort them by the leaf order.

Fig. 6. Switching X axis to timestamps. (a) by default absolute time is
displayed (b) aligning at an event changes the X axis to relative time
(c) zooming in on the timeline shows that most events in the pattern
occurred within a 20 minutes time range.

6 EXAMPLE USAGE SCENARIOS

We present example usage scenarios with real-world datasets from two
application domains to showcase the utility of our approach.

6.1 Vehicle Fault Analysis for Predictive Diagnostics

Fig. 7. Visual summary of all sequence data. A cluster (A) with a similar
pattern compared to the dominant one in Fig. 1. It contains vehicles sold
in country C. Some other clusters (B) contain vehicles sold in country A.

Our first usage scenario involves an expert in the automotive industry.
The expert is interested in vehicle data analytics, especially analyzing
the development paths of faults in vehicles. We conduct the case study
together with the expert. Today’s vehicles are complex machines with
interconnected modules and the faults have a significant history of de-
velopment over the vehicles’ lifetime. Understanding that history help
with predictive diagnostics, i.e., prevent the fault from occurring or mit-
igate its effects in advance. Eventually this could improve the driving
experience and lower the warranty cost for the car manufacturers.

The fault events in vehicles are automatically recorded along
with the timestamp information. We obtain a sample dataset (VFS)
from the expert. The dataset contains the fault sequences of 261
vehicles together with information such as their vehicle identification
numbers(VINs), build dates and the countries they were sold to. The
data is collected in one year. In total we count 154 different types
of faults. The average length of the event sequence is 9.74. The
maximum length is 145. Each fault also has an associated timestamp.
The VIN number, the description of the events and the country names
are anonymized for privacy concerns.

Data filtering. The analyst started the analysis by filtering
sequences. Since the analyst was particularly interested in the vehicles
sold to Country C, she got a subset of the data by selecting Country
C in the sequence filter (Fig. 1 (D)). The event filter shows that most of
the frequently occuring faults are close to the focus event at the center
(Fig. 1 (C)). With the lasso tool, the analyst selected these events for
further study. The summary view was updated to show the patterns



within the filtered data. It could be observed that there is a dominant
cluster with a pattern of 9 events, as highlighted in Fig. 1 (A).

Temporal relation exploration. To further investigate the temporal
distributions of the events in the pattern, the analyst switched the X axis
in the sequences view to accurate timestamps (Fig. 6 (a)). By default
the visualization shows the absolute time, i.e., the exact date and time
of the events. To further study how the cause and effect relationship
took place over time, the analyst aligned all the sequences at event
gh in the pattern (Fig. 6 (b)). This changed the X axis to relative time
with respect to ‘gh’. A reference axis is shown with the movement
of the mouse to indicate the time gap between the reference bar and
the aligned event. After zooming in the X axis Fig. 6 (c), it could be
observed that the events all happened within a short time range (around
20 minutes), indicating a causal relationship that took effect pretty fast.

Detail-on-demand. The summary view shows that quite a
few events happened after the pattern ends (Fig. 1 (A.0)). The
analyst therefore double clicked on the triangle to look into the next
level-of-detail. Fig. 1 (A.1) shows that the corrections part actually
contained a large proportion of subsequences with error fm. It could
be hypothesized that fm is also closely related to the events included
in the sequential pattern, although it may not have happened yet for
some of the vehicles in the cluster.

Insight validation. Now the analyst was curious about whether
vehicles sold to other countries also exhibit the same sequential fault
pattern. She cleared the filtering conditions and included all the
vehicles in the analysis. The summary view (Fig. 7) shows the updated
results and order the patterns by their similarity. The analyst observed
that there is a cluster with the same sequential pattern when compared
to the major cluster in Fig. 1. Hovering over the cluster also highlights
the corresponding entries in the table, where the analyst observed that
all the vehicles within the cluster were sold in country C. Meanwhile,
the analyst also found that there is another group of clusters which
contains vehicles mostly sold in country A. This observation leaded to
further hypothesis about the potential root causes of these faults, such
as the climate characteristics in different geographic areas or faulty
parts used in producing the particular batches of cars.

6.2 Application Log Analysis for UI Design Optimization
Our second usage scenario is application log analysis. Desktop or web
applications can collect large amount of usage log data recording user
interactions and many other events in the system. Log data analysis
has the potential to provide important insights about users’ behavioral
patterns and help optimize the user interface design.

We use a public dataset named Agavue [10]. The dataset logs the
user interactions and function calls in a data visualization application in
Excel. The sample dataset contains 2211 unique user sessions and 35
distinct event types. An additional preprocessing step is used to merge
adjacent events of the same type. After preprocessing, the average
sequence length is 11.04 and the maximum sequence length is 146.

Overview. The analyst started with an overview of the data (Fig. 8)
and aligned the patterns at the appInit event. Not surprisingly, most
patterns (e.g., Fig. 8 (A, B)) contain a typical sequence of operations
including initializing the app (appInit, create), resizing the window,
binding data (bindFromPrompt, readBoundData). The analyst can
click on the patterns to review the sequences in each group (Fig. 8 (C,
D)). Pattern B represents a group of sequences with better consistency,
indicated by the smaller sizes of the triangles. Pattern A represents
a group of sequences that are consistent in the first few events however
have more significant deviations afterwards. This observation can be
easily verified by looking at the detailed views (Fig. 8 (C, D)).

Cause and effect relation analysis. Since error messages popping
up in an app can interrupt the users’ analytic workflow and have a neg-
ative effect on user experience, it is important to understand the context
in which the error messages occur and based on that, redesign the appli-
cation to reduce the error messages if possible. To this end the analyst
aligned the patterns at the error event (Fig. 9) to study its antecedents.
She observed that most errors occur after users trying to bind data to the
visualization (bindFromPrompt). One possible explanation is that the
users may not be familiar with the data format requirements associated

with the visualizations. This observation indicates that better interface
for data binding can be designed to further improve user experience.

7 EXPERT INTERVIEW

We demonstrated how the prototype could be applied to analyze the
vehicle fault sequence data to three groups of analysts from the auto-
motive industry. The analysts all dealt with similar data in their daily
work and they were very familiar with the usage scenario. One group
of analysts was interviewed remotely and interacted with the system
through our web server. The other two interviews were conducted
face to face. For each interview, we first introduced the visual designs
and the interactions in the system, and then asked analysts to explore
the system on their own for about half an hour. After that, we had
discussion sessions with the domain experts focusing on three different
aspects of the system, e.g., system usability, required additional
features and other potential uses (besides vehicle fault analysis) of the
system. The analysts commented positively on the system and were
intrigued by the idea of fuzzy pattern matching and sequence clustering.
Most of the experts think that one of the most powerful features
in the system is the interactive alignment of the sequence clusters.
Furthermore, one analyst commented that “the system shows clearly the
seriousness of some faults as it might later lead to other faults [based
on the summary view and the detailed view]”, “the correlation among
the faults are very clear to see [in the radial graph]” and “with more
data it would be a powerful tool to spot patterns of fault occurrences”.
Seeing the great potential value of the system, the analysts have already
arranged follow-up discussions with us about offering the visual
analytics solution as part of their vehicle data analytics software.

Besides that, the analysts also requested additional features in
the system. For example, now the system only supports aligning on
a single event and they recommended to generalize this feature to
support aligning at two or even more events to identify what happened
between those anchor points.

One analyst mentioned that vehicles from many car manufacturers
record error logs in the same manner. Therefore, the system could bene-
fit different car brands. The analyst pointed out that although the current
system was demonstrated with a small sample dataset, the features in
the system could become more powerful with large scale data.

During the demonstration we also mentioned that the algorithm and
the system were generic and could be used to analyze other datasets
such as website click streams/application logs as well. One analyst
immediately recalled that they also collect click stream data for vehicle
diagnostics software used in repair shops and suggested that “the system
can help optimize the interface, [and] shorten the time [for the repairers]
to find information”. After that he/she asked for further follow-up to
fully assess the feasibility of this approach and showed great interest
to also continue pursuing this particular usage scenario. This demon-
strated that the principle underlying the system can be easily grasped
and it has the versatility to be adapted to different application scenarios.

8 LIMITATIONS AND FUTURE WORK

Scalability. The current visual design of the summary view can display
20∼30 patterns without too much visual clutter. In the experiment,
we tested a dataset containing up to about 2200 individual sequences
and the result shows that dozens of patterns can effectively summarize
the data. However some datasets may inherently contain more distinct
patterns and the proposed approach could suffer from scalability issues.
Further experiments need to be conducted to assess the applicability of
the framework to large datasets. Besides that, one way to improve the
scalability of the system is to extend the current framework to support
hierarchical visual summary of event sequences. For example, starting
from a high-level overview, users can select one cluster and split it into
several low-level clusters. To support this extension, the algorithms
need to maintain a hierarchical structure of the data, and the system
features also need to be adjusted to support smooth user interaction.

Multiple patterns. The current framework only supports matching
individual event sequences to a specific sequential pattern. In real-
world applications, an event sequence may contain several patterns,
especially when it is very long. We plan to tackle this issue from two



Fig. 8. The system screenshot for analyzing the Agavue dataset. Most patterns (e.g., A and B) show typical sequence of operations including
initializing the app (appInit, create), resizing the window, binding data (bindFromPrompt, readBoundData, treeStats). Pattern B represents a more
homogeneous group of sequences (the triangles are quite small). Pattern A represents a group of sequences that is more similar in the first few
events however has more significant deviations later.

Fig. 9. When aligned at the error event, the summary view shows the
most frequent antecedents (binding data) and sequelae (close error
message window).

directions. One direction is to extend the two-part representation and
support matching individual sequences to multiple sequential patterns.
Another direction is to design algorithms or support user interactions
to segment long sequences into meaningful shorter ones and use the
subsequences as input to the MDL framework.

Event importance. Although we treat all the events equally in the
paper, it is common in real-world usage scenarios that some events
are more critical compared to the others. For example, some faults in
the vehicles may indicate failures in engine start and would require
immediate repair services whereas others might not have major effect
on vehicle operation. In such cases aggregating the critical events into
the triangle may not be a good option. We will continue to explore the

potential approaches to signify such differences in event importance.
Pattern query. In many usage scenarios, users are interested in

certain sequences based on domain knowledge. To improve the usability
of our system and keep users in the loop, the system should support
pattern query and present the queried patterns in the summary view.

General MDL based visual summary. The method proposed in
the paper addresses a fundamental trade-off in visualization design:
reducing visual clutter vs. increasing the information content in the
visualization. We believe our approach successfully showcases how
this trade-off can be directly quantified and optimized to construct
an informative and concise overview of the data. We envision that
similar approaches can also be designed for other types of data, e.g.,
graphs/networks and time series data. For example, Navlakha et. al.
[30] has applied MDL for graph summarization. However, they did not
address the tradeoff between the visual clutter and information content.
For visualization community, there is still a lot of room for exploration.

9 CONCLUSION

In this paper, we present a novel visual analytics approach to visualize
event sequence data. First, we propose an information-theoretic
method based on the minimum description length principle to construct
an overview of data. This method can extract sequential patterns and
cluster event sequences simultaneously. We further demonstrate that
it supports soft pattern matching and it is a generic approach that can
incorporate different editing operations. We then propose a comprehen-
sive visual analytics system with multiple levels-of-detail to facilitate
interactive data exploration. We also conduct case studies with two
real-world dataset and collect feedback from end users to demonstrate
the effectiveness of the proposed approach. We also introduce a new
application domain for event sequence visualization, which is fault
development path analysis for predictive diagnostics in vehicles.

ACKNOWLEDGMENTS

We would like to thank Kelsey Hoggard for supporting the video editing.
We would also like to thank Prof. Huamin Qu and the VAST reviewers
for their valuable comments. This work is also supported by RGC GRF
16208514.



REFERENCES

[1] Google analytics. https://analytics.google.com/.
[2] E. Brill and R. C. Moore. An improved error model for noisy channel

spelling correction. In Proceedings of the 38th Annual Meeting on As-
sociation for Computational Linguistics, pp. 286–293. Association for
Computational Linguistics, 2000.

[3] I. Cadez, D. Heckerman, C. Meek, P. Smyth, and S. White. Model-based
clustering and visualization of navigation patterns on a web site. Data
Mining and Knowledge Discovery, 7(4):399–424, 2003.

[4] T. Calders, C. W. Günther, M. Pechenizkiy, and A. Rozinat. Using mini-
mum description length for process mining. In Proceedings of the 2009
ACM symposium on Applied Computing, pp. 1451–1455. ACM, 2009.

[5] N. Cao, Y.-R. Lin, F. Du, and D. Wang. Episogram: Visual summa-
rization of egocentric social interactions. IEEE computer graphics and
applications, 36(5):72–81, 2016.

[6] J. Chuang, D. Ramage, C. Manning, and J. Heer. Interpretation and trust:
Designing model-driven visualizations for text analysis. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, CHI
’12, pp. 443–452. ACM, New York, NY, USA, 2012.

[7] F. Du, C. Plaisant, N. Spring, and B. Shneiderman. Eventaction: Visual
analytics for temporal event sequence recommendation. Proceedings of
the IEEE Visual Analytics Science and Technology, 2016.

[8] F. Du, B. Shneiderman, C. Plaisant, S. Malik, and A. Perer. Coping with
volume and variety in temporal event sequences: Strategies for sharpen-
ing analytic focus. IEEE Transactions on Visualization and Computer
Graphics, PP(99):1–14, 2016.

[9] J. A. Ferstay, C. B. Nielsen, and T. Munzner. Variant view: Visualizing
sequence variants in their gene context. IEEE transactions on visualization
and computer graphics, 19(12):2546–2555, 2013.

[10] D. Fisher. Agavue event data sample: Full dataset. version of october 20,
2016. microsoft research. retrieved from http://eventevent.github.io.

[11] D. Gotz. Soft patterns: Moving beyond explicit sequential patterns during
visual analysis of longitudinal event datasets. In Proceedings of the IEEE
VIS 2016 Workshop on Temporal & Sequential Event Analysis, 2016.

[12] D. Gotz and H. Stavropoulos. Decisionflow: Visual analytics for high-
dimensional temporal event sequence data. IEEE transactions on visual-
ization and computer graphics, 20(12):1783–1792, 2014.

[13] P. Grunwald. A tutorial introduction to the minimum description length
principle. arXiv preprint math/0406077, 2004.

[14] P. D. Grünwald. The minimum description length principle. MIT press,
2007.

[15] S. Haroz, R. Kosara, and S. L. Franconeri. The connected scatterplot for
presenting paired time series. IEEE transactions on visualization and
computer graphics, 22(9):2174–2186, 2016.

[16] S. Ioffe. Improved consistent sampling, weighted minhash and l1 sketching.
In Data Mining (ICDM), 2010 IEEE 10th International Conference on, pp.
246–255. IEEE, 2010.

[17] J. Kiernan and E. Terzi. Constructing comprehensive summaries of large
event sequences. ACM Transactions on Knowledge Discovery from Data
(TKDD), 3(4):21, 2009.

[18] H. Koga, T. Ishibashi, and T. Watanabe. Fast agglomerative hierarchical
clustering algorithm using locality-sensitive hashing. Knowledge and
Information Systems, 12(1):25–53, 2007.

[19] J. Krause, A. Perer, and H. Stavropoulos. Supporting iterative cohort con-
struction with visual temporal queries. IEEE transactions on visualization
and computer graphics, 22(1):91–100, 2016.

[20] M. Krstajic, E. Bertini, and D. Keim. Cloudlines: Compact display of
event episodes in multiple time-series. IEEE Transactions on Visualization
and Computer Graphics, 17(12):2432–2439, Dec 2011.

[21] B. C. Kwon, J. Verma, and A. Perer. Peekquence: Visual analytics for
event sequence data. In ACM SIGKDD 2016 Workshop on Interactive
Data Exploration and Analytics, 2016.

[22] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive datasets.
Cambridge University Press, 2014.

[23] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization:
recent advances and challenges. The Visual Computer, 30(12):1373–1393,
2014.

[24] Z. Liu, H. Dev, M. Dontcheva, and M. Hoffman. Mining, pruning and
visualizing frequent patterns for temporal event sequence analysis. In
Proceedings of the IEEE VIS 2016 Workshop on Temporal & Sequential
Event Analysis, 2016.

[25] Z. Liu, B. Kerr, M. Dontcheva, J. Grover, M. Hoffman, and A. Wilson.

Coreflow: Extracting and visualizing branching patterns from event se-
quences. 2017.

[26] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wil-
son. Patterns and sequences: Interactive exploration of clickstreams to
understand common visitor paths. IEEE Transactions on Visualization
and Computer Graphics, 23(1):321–330, 2017.

[27] Y. Lu, M. Steptoe, S. Burke, H. Wang, J.-Y. Tsai, H. Davulcu, D. Mont-
gomery, S. R. Corman, and R. Maciejewski. Exploring evolving media
discourse through event cueing. IEEE transactions on visualization and
computer graphics, 22(1):220–229, 2016.

[28] A. Makanju, S. Brooks, A. N. Zincir-Heywood, and E. E. Milios. Logview:
Visualizing event log clusters. In Privacy, Security and Trust, 2008.
PST’08. Sixth Annual Conference on, pp. 99–108. IEEE, 2008.

[29] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman. Temporal
event sequence simplification. IEEE transactions on visualization and
computer graphics, 19(12):2227–2236, 2013.

[30] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization with
bounded error. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pp. 419–432. ACM, 2008.

[31] A. Perer and D. Gotz. Data-driven exploration of care plans for patients.
In CHI’13 Extended Abstracts on Human Factors in Computing Systems,
pp. 439–444. ACM, 2013.

[32] A. Perer and F. Wang. Frequence: interactive mining and visualization
of temporal frequent event sequences. In Proceedings of the 19th inter-
national conference on Intelligent User Interfaces, pp. 153–162. ACM,
2014.

[33] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Lifelines:
visualizing personal histories. In Proceedings of the SIGCHI conference
on Human factors in computing systems, pp. 221–227. ACM, 1996.

[34] C. Plaisant and B. Shneiderman. The diversity of data and tasks in event
analytics. In Proceedings of the IEEE VIS 2016 Workshop on Temporal &
Sequential Event Analysis, 2016.

[35] P. J. Polack, S.-T. Chen, M. Kahng, M. Sharmin, and D. H. Chau. Ti-
mestitch: Interactive multi-focus cohort discovery and comparison. In
Visual Analytics Science and Technology (VAST), 2015 IEEE Conference
on, pp. 209–210. IEEE, 2015.

[36] A. C. Robinson, D. J. Peuquet, S. Pezanowski, F. A. Hardisty, and B. Swed-
berg. Design and evaluation of a geovisual analytics system for uncovering
patterns in spatio-temporal event data. Cartography and Geographic In-
formation Science, 44(3):216–228, 2017.

[37] R. A. Ruddle, J. Bernard, T. May, H. Lücke-Tieke, and J. Kohlhammer.
Methods and a research agenda for the evaluation of event sequence
visualization techniques. In Proceedings of the IEEE VIS 2016 Workshop
on Temporal & Sequential Event Analysis. Leeds, 2016.

[38] D. Salomon and G. Motta. Handbook of data compression. Springer
Science & Business Media, 2010.

[39] J. M. Santos and M. Embrechts. On the use of the adjusted rand index as a
metric for evaluating supervised classification. In International Conference
on Artificial Neural Networks, pp. 175–184. Springer, 2009.

[40] Z. Shen and N. Sundaresan. Trail explorer: Understanding user experience
in webpage flows. IEEE VisWeek Discovery Exhibition, pp. 7–8, 2010.

[41] Z. Shen, J. Wei, N. Sundaresan, and K.-L. Ma. Visual analysis of massive
web session data. In Large Data Analysis and Visualization (LDAV), 2012
IEEE Symposium on, pp. 65–72. IEEE, 2012.

[42] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Visual Languages, 1996. Proceedings.,
IEEE Symposium on, pp. 336–343. IEEE, 1996.

[43] B. Shneiderman and C. Plaisant. Sharpening analytic focus to cope with
big data volume and variety. IEEE computer graphics and applications,
35(3):10–14, 2015.

[44] J. Stasko and E. Zhang. Focus+ context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations. In Information
Visualization, 2000. InfoVis 2000. IEEE Symposium on, pp. 57–65. IEEE,
2000.

[45] R. Veras and C. Collins. Optimizing hierarchical visualizations with the
minimum description length principle. IEEE Transactions on Visualization
and Computer Graphics, 23(1):631–640, 2017.

[46] R. Veras and C. Collins. Optimizing hierarchical visualizations with the
minimum description length principle. IEEE Transactions on Visualization
and Computer Graphics, 23(1):631–640, Jan 2017.

[47] K. Vrotsou, J. Johansson, and M. Cooper. Activitree: interactive visual
exploration of sequences in event-based data using graph similarity. IEEE
Transactions on Visualization and Computer Graphics, 15(6):945–952,



2009.
[48] G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao. Unsupervised

clickstream clustering for user behavior analysis. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, pp. 225–
236. ACM, 2016.

[49] J. Wang, J. Han, and C. Li. Frequent closed sequence mining without
candidate maintenance. IEEE Transactions on Knowledge and Data
Engineering, 19(8), 2007.

[50] T. D. Wang, C. Plaisant, A. J. Quinn, R. Stanchak, S. Murphy, and B. Shnei-
derman. Aligning temporal data by sentinel events: discovering patterns
in electronic health records. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pp. 457–466. ACM, 2008.

[51] T. D. Wang, C. Plaisant, B. Shneiderman, N. Spring, D. Roseman, G. Marc-
hand, V. Mukherjee, and M. Smith. Temporal summaries: Supporting
temporal categorical searching, aggregation and comparison. IEEE trans-
actions on visualization and computer graphics, 15(6), 2009.

[52] F. Wanner, A. Stoffel, D. Jäckle, B. C. Kwon, A. Weiler, D. A. Keim, K. E.
Isaacs, A. Giménez, I. Jusufi, T. Gamblin, et al. State-of-the-art report
of visual analysis for event detection in text data streams. In Computer
Graphics Forum, vol. 33, 2014.

[53] J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma. Visual cluster exploration
of web clickstream data. In Visual Analytics Science and Technology
(VAST), 2012 IEEE Conference on, pp. 3–12. IEEE, 2012.

[54] K. Wongsuphasawat and D. Gotz. Exploring flow, factors, and outcomes
of temporal event sequences with the outflow visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2659–2668, Dec
2012.

[55] K. Wongsuphasawat, J. A. Guerra Gómez, C. Plaisant, T. D. Wang,
M. Taieb-Maimon, and B. Shneiderman. Lifeflow: visualizing an overview
of event sequences. In Proceedings of the SIGCHI conference on human
factors in computing systems, pp. 1747–1756. ACM, 2011.

[56] K. Wongsuphasawat and B. Shneiderman. Finding comparable temporal
categorical records: A similarity measure with an interactive visualization.
In Visual Analytics Science and Technology, 2009. VAST 2009. IEEE
Symposium on, pp. 27–34. IEEE, 2009.

[57] J. Wood. Visualizing personal progress in participatory sports cycling
events. IEEE Computer Graphics and Applications, 35(4):73–81, 2015.

[58] E. Zgraggen, S. M. Drucker, D. Fisher, and R. Deline. (s|qu)eries: Vi-
sual regular expressions for querying and exploring event sequences. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in
Computing Systems, CHI 2015, Seoul, Republic of Korea, April 18-23,
2015, pp. 2683–2692, 2015.

[59] J. Zhao, C. Collins, F. Chevalier, and R. Balakrishnan. Interactive ex-
ploration of implicit and explicit relations in faceted datasets. IEEE
Transactions on Visualization and Computer Graphics, 19(12):2080–2089,
2013.

[60] J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson. Matrixwave:
Visual comparison of event sequence data. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, pp.
259–268. ACM, 2015.


	Introduction
	Related Work
	Event Sequence Visualization
	Event Sequence Mining and Visualization

	MDL for Event Sequences
	A Generic Method to Summarize Event Sequences
	The MDL Principle
	Denotations and Formal Problem Definition

	Computing MDL Representation
	Basic Algorithm
	Speedup with Locality Sensitive Hashing (LSH)
	Soft Pattern Matching

	The Visual Analytics System
	Analysis Tasks
	Event Filter
	Summary View
	Sequence View
	User Interaction

	Example Usage Scenarios
	Vehicle Fault Analysis for Predictive Diagnostics
	Application Log Analysis for UI Design Optimization

	Expert Interview
	Limitations and Future Work
	Conclusion

