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Fig. 1. Interface of VIBR demonstrating how analyst discovers different patterns of vehicle faults of a car model using bipartite graph
summarization. First she selects the data using the filters D© and computes a summarization A© filtered by the density and the sizes
of the clusters B©. From the adjacency list style overview A© she observes several interesting groups of vehicles with different fault
patterns (a and b). Splitting the summary view into small multiples 1©, several unique groups of faults (e.g. c) only occur in vehicles
with a particular engine code. She further dives into the next level of detail by bringing up a matrix view for a particular block 2©. A
reference of labels is always provided in the legend bar with text search provided G©. The node attribute value distributions and detail
node information are displayed in E© and table F© respectively.
Abstract—Bipartite graphs model the key relations in many large scale real-world data: customers purchasing items, legislators voting
for bills, people’s affiliation with different social groups, faults occurring in vehicles, etc. However, it is challenging to visualize large scale
bipartite graphs with tens of thousands or even more nodes or edges. In this paper, we propose a novel visual summarization technique
for bipartite graphs based on the minimum description length (MDL) principle. The method simultaneously groups the two different set
of nodes and constructs aggregated bipartite relations with balanced granularity and precision. It addresses the key trade-off that often
occurs for visualizing large scale and noisy data: acquiring a clear and uncluttered overview while maximizing the information content in
it. We formulate the visual summarization task as a co-clustering problem and propose an efficient algorithm based on locality sensitive
hashing (LSH) that can easily scale to large graphs under reasonable interactive time constraints that previous related methods
cannot satisfy. The method leads to the opportunity of introducing a visual analytics framework with multiple levels-of-detail to facilitate
interactive data exploration. In the framework, we also introduce a compact visual design inspired by adjacency list representation of
graphs as the building block for a small multiples display to compare the bipartite relations for different subsets of data. We showcase
the applicability and effectiveness of our approach by applying it on synthetic data with ground truth and performing case studies on
real-world datasets from two application domains including roll-call vote record analysis and vehicle fault pattern analysis. Interviews
with experts in the political science community and the automotive industry further highlight the benefits of our approach.
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1 INTRODUCTION

Understanding bipartite relations is the key to gain insight from data
in a variety of application domains. Such activity can often be seen in
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user preferences identification on movie recommender systems [19],
market basket analysis on sales records [15] , political leanings analysis
on roll-call vote records [4] and relationship discovery in urban open
data [6, 8]. As “a picture is worth a thousand words,” visualization
plays an important role in landing a good hypothesis or direction for
domain experts to analyze bipartite relations at scale.

Recently many visualization techniques have been proposed to sup-
port bipartite relation analysis [12, 37, 39, 44, 47]. Nonetheless, the
increasing volume and complexity of the data bring new challenges.
First, revealing all information at once will exceed human’s cognitive
ability to conduct effective analysis. In our use cases (Sect. 7) data
either contains more than 170, 000 bipartite connections or contains
5,000 - 43,000 nodes depending on the subset selected for analysis.
Plainly showing the data will be considered as infeasible. A better
way to help analysts start the data exploration is to construct a broad
overview of the data instead of showcasing each individual entity and bi-
partite connection. Second, noises are prevalent in real-world datasets,
thus the insights are common to contain artifacts as well. Thus, what
analyst needs is a robust visualization technique that reveals the most
general and salient patterns in the entire dataset.

To address these challenges, we describe a novel visual summa-
rization technique for bipartite relational data using an information-
theoretic approach. We apply the Minimum Description Length (MDL)
principle [32] which provides a criteria to optimize the aggregation
of bipartite relations to create a high-level overview, balancing visual
complexity and information loss in the display. We visually represent
the original data with the aggregated bipartite connections, and in the
meanwhile model the information loss with the corrections needed to
recover the original data from the aggregated graph.

Using the MDL principle in visual data summarization has been
seen in hierarchical data [42] and event sequence data [7], but apply-
ing it to large scale bipartite relation data imposes new challenges
and opportunities. Apart from formulating the principle for bipartite
relations, we also describe how to speed it up with locality sensitive
hashing (LSH) [22], which effectively improves the running time with-
out significantly degrading the results. We further introduce a tailored
and space efficient visualization design inspired by visual adjacency
lists [18] to display the aggregated bipartite relations. The compact
visual design fits nicely in a small multiples display for visual compar-
ison of bipartite relations across different subsets of data, which can
be created by faceting on a selected node attribute. A comprehensive
visual analytic system is developed as well to support data exploration
at varying levels-of-detail, correlating domain-specific node attributes
with the relation patterns, and filtering and selecting subsets for focused
analysis to cope with the challenges in usabilities [24]. In short, our
contributions are as follows:

• We apply the MDL principle to pack large scale and noisy bipar-
tite relation data into a highly compressed representation which
is suitable for a coarse-level overview of the data.

• We propose an efficient algorithm based on LSH to optimize the
MDL optimization process to facilitate interactive analysis.

• We introduce novel visual analytics techniques and interaction
designs for exploring large scale multivariate bipartite graph data.

• We present two example usage scenarios with real-world datasets
and domain specific analytic tasks that demonstrate the usability,
effectiveness and general applicability of our technique.

2 RELATED WORK

Bipartite graph exists in many application domains and a variety of
visualization techniques have been developed in the past. Here we
categorize the related work into plain bipartite graph visualization and
bipartite graph aggregation for a high-level overview of the data.

2.1 Bipartite relation visualization
The most common approach to visualize bipartite relations is to posi-
tion two sets of nodes on separated regions on the display and draw
edges as (curved) lines between the nodes. Related techniques can
be seen in various visualizations including semantic substrates [34],
PivotPath [10], Jigsaw [36], and parallel node-link bands [13]. All of

them applied such principle to display bipartite relation and encode
additional attributes with node sizes and colors, edge widths, opacities
and coloring, etc. Another layout style for bipartite graph is unimodal,
which treats the bipartite graph as a whole without spatial separation.
Such visualization techniques use color, shape or other visual channels
to distinguish the sets, which can be seen in FacetAtlas [3], Onto-
Vis [33] and Anchored Maps [26]. Besides bipartite graphs can also
be represented by adjacency matrices. The visualization techniques
usually build upon the simplest form of adjacency matrices and enhance
it with additional visual cues or interactive functionalities [20,35]. Row
and column seriation techniques further facilitate pattern recognition in
matrix displays [2, 31, 35]. Besides node-link diagrams and adjacency
matrices, bipartite graphs can also be visually represented by a hybrid
of the two, highlighting the bi-cluster structure detected by automatic
algorithms as in Bixplorer [12], or visualizing additional topological
structures on top of the bipartite relations [27].

Bipartite graphs can also be generally represented as sets covered in
a recent survey about the state-of-the-art of set visualization techniques
[1]. In general, most of the techniques visualize a moderately sized
dataset with at most hundreds of sets/items. Our work focuses on
providing a concise overview of large scale bipartite graphs with tens
of thousands or even more nodes and edges.

2.2 Bipartite relation clustering and visualization
To support scalable analysis and pattern detection on bipartite graph
data, work has been focusing on graph summarization through edge or
node aggregation. We group the graph summarization algorithms and
the corresponding visualization techniques into two major categories:

Algorithms including CHARM [45] and LCM [41] extracts bi-
cliques in coordinated bipartite relations. Bixplorer [12, 38, 40], BiSet
[39], and BiDots [47] utilize them to identify and visualize bi-cliques.
The visualization techniques display such structures using overlays on
top of matrices/node-link diagrams, bundles edges within a bi-clique
in node-link diagrams [23, 30, 39], or combine both to form a hybrid
representation [12, 37]. However, real-world data is usually noisy and
missing links may create a lot of fragmented bi-cliques that overwhelm
the users. Although interactive exploratory visualization techniques
can partly alleviate this issue [39,47], a high-level overview still cannot
be obtained easily.

Another category of bipartite graph clustering algorithms simultane-
ously group the nodes in the two partitions, relaxing the requirements
on bi-cliques. Spectral co-clustering [21] and spectral bi-clustering [9]
were classical methods. Recently, some bipartite visualization tech-
niques utilize those algorithms to perform data aggregation and reduce
visual clutter in the display, including Xu et al. [44] and Ming et al. [25].

VIBR falls into this research domain, although we formulate the
co-clustering problem with the information theoretic minimum descrip-
tion length principle (MDL) [32], which allows the method to directly
quantify and minimize the information loss in the visual display. Re-
cently, Veras and Collins [42] and Chen et al. [7] apply it to construct
high-level visual summary of hierarchical and temporal event sequence
data respectively to balance the conciseness and information content
in visualization. The MDL principle has also been applied to graph
summarization in the database and data mining research community.
Navlakha et al. [29] is the first work proposing summarization of gen-
eral graphs with bounded error based on a two-part representation of
summary graph and corrections.

A similar approach (SCMiner) has been proposed by Feng et al. [11]
for weighted bipartite graphs. However, our algorithm is accelerated
with LSH which experimentally reveals that our algorithm has over
300 times speed gain as compared to SCMiner and three times speed
gain compared to Cross-association [5] (a matrix clustering algorithm),
making it more suitable for interactive exploration of data.

We further propose a novel design to visualize the aggregation in-
spired by the visual adjacency list design for dynamic graph visual-
ization [18]. The visual design provides a compact overview of the
bipartite relations and facilitates visual comparison across different
subsets in the data. The analysts can facet on a selected node attribute
and compare the bipartite connections.



3 MINIMUM DESCRIPTION LENGTH (MDL) FOR BIPARTITE
GRAPH SUMMARIZATION

In the following discussion we use U and V to denote the two sets of
nodes and the bipartite graph is R ⊆U ×V . In this section we first
introduce a two-part representation of a bipartite graph, inspired by the
two-part representation of general graphs in [29], which consists of a
summary graph and a set of residual edges. Combining it with the MDL
principle we formulate an optimization goal to identify a simultaneous
grouping (i.e., co-clustering) of U and V such that the corresponding
summary graph can describe the original data balancing complexity
and information loss.

3.1 Two-part representation of a bipartite graph
The two-part representation is illustrated in Fig. 2. Given a simultane-
ous grouping of the nodes in U and V (Fig. 2(a)), it consists of:

A summary graph S with the meta-nodes and their interconnections
as illustrated in Fig. 2(b). An edge is created between two meta-nodes if
the connection is dense in the original graph. For example, it is almost
a bi-clique between {1,2,3} and {a,b,c}, therefore in the summary
graph an edge is created between these two meta-nodes. On the other
hand only one edge exists in the original graph between {1,2,3} and
{d}, so the summary graph between these two has no edges.

A list of corrections C that can recreate the original data from the
summary graph. The summary graph is an approximate representation
of the original data. With the meta-edges we can infer that the inter-
connection between two clusters is dense. However it is not enough to
recover the exact bipartite connections. We need to include additional
corrections to remove the non-existing edges. For example, between
{1,2,3} and {a,b,c}, every edge exists except for (2,c), therefore we
add an additional correction to remove (2,c) which does not exist in the
original graph (Fig. 2(c)). On the other hand, even when meta-edges
do not exist in the summary graph, it is still possible for some edges
to appear in the original data, therefore another type of correction add
edges back. For example, between {1,2,3} and {d} no edges exist
except for (1,d), so we add back (1,d) (Fig. 2(c)).

Fig. 2. A bipartite graph can be represented as a summary graph S with
corrections C. The original set requires 11 units of spaces (11 edges)
while S and C together only require 4 (2 in S and 2 in C).

Combining the summary graph and the corrections we can fully
recover the original graph. The two-part representation is therefore a
lossless representation of the original data. The summary graph S can
provide a coarse-level overview of the data and the corrections C model
the information loss in the display. The visual complexity dramatically
decreases in the overview and user can immediately grasp the dominant
connectivity patterns in the bipartite graph. Visual abstraction of the
data is even more critical for understanding bipartite relations with
thousands or even millions of nodes and edges when it becomes almost
impossible to fit all the raw data on a single screen.

The remaining problem is how to identify a summary graph which
can best represent the underlying data balancing the visual complexity
and information loss. This problem eventually boils down to identifying
an optimal grouping of the nodes in U and V based on which we can
bundle the edges to form the summary graph.

3.2 The MDL principle
We propose an algorithm to obtain an optimal grouping of the nodes
in U and V simultaneously following the minimum description length

(MDL) principle. The MDL principle states that the best model (or
hypothesis) of a dataset should minimize its total description length
L, which consists of the model description length and the description
length of the original data with the help of the model:

L = L(M)+L(D|M)

For a bipartite graph, the model is the summary graph S and given
a summary graph we can use the corresponding corrections part C to
recover the original data. Our goal is to obtain an optimal grouping
of the nodes such that it can minimize the total description length of
the summary graph and the corrections. To state it more formally, we
denote a bipartite graph as R⊆U×V . Our goal is to identify a partition
of U and V such that it can minimize the total description length:

LR(P,Q) = L(S)+L(C)

where P is a partition of U , Q is a partition of V , S ⊆ P×Q is the
summary graph and C is the set of corrections. The definition of C is:

C= (∪(p,q)∈Sp×q)⊕R

where ⊕ denotes the disjunctive union between sets. Since we only
need to store the meta-edge information for the summary graph, the
description length is L(S) ∝ ‖S‖ and the description length of the
corrections is L(C) ∝ ‖C‖. We further introduce the parameters α ,
βP and βQ to control the penalty of the corrections and the number of
clusters, similar to Veras and Colins et al. [42] and Chen et al. [7]. To
sum up, our goal is to find P and Q that can minimize the loss function:

LR(P,Q) = ‖S‖+α‖(∪(p,q)∈Sp×q)⊕R‖+βP‖P‖+βQ‖Q‖ (1)

where βP‖P‖+βQ‖Q‖ can be considered as two regularization terms
which penalize large number of node clusters. Larger βP and βQ results
in smaller numbers of clusters. An example of the effect can be found
in ?? (Appendix).

4 COMPUTING MDL REPRESENTATION

In this section, we first introduce a basic algorithm to find partition P
and Q and the corresponding summary graph S that can minimize the
description cost described in Equation 1. Then we describe a speed
up strategy that applies LSH [22], an efficient nearest neighbor search
algorithm. We report the results of a series of empirical experiments
to verify the robustness of the algorithm and compare it with other
co-clustering algorithms.

4.1 The BM-MDL algorithm
We first propose a basic version of the algorithm named BM-MDL
(bipartite graph mining with MDL) based on the approach proposed by
Navlakha et al. [29]. The algorithm follows a bottom-up and greedy
approach. Initially each node is treated as an individual cluster. In
each iteration, we identify a pair of clusters to merge that will result in
the maximum reduction in description length. The process stops when
the total description length no longer decreases. As a simple speed up
strategy, we use a randomized approach which picks a cluster randomly
and merge it with the best node in its hop-2 neighborhood, similar to
Navlakha et al. [29]. For example, in Fig. 2, if node 1 is first chosen,
the algorithm will try to merge it with its 2-hop neighbors including
node 2, 3, 4 and 5. Merging node 1 and 2 creates two meta-edges
({1,2},{a}) and ({1,2},{b}) in S and two additional correction edges
(1,c) and (1,d) in C. Assuming α = 1, ∆L = 2+βP since there are
two edges less in total and the number of node clusters in P reduces
by one. Similarly, the algorithm calculates ∆L by merging node 1 with
node 3, 4 or 5, this result in ∆L = 3,1,1 respectively with an additional
constant βP. The algorithm therefore will choose node 3 and merge
it with node 1. The procedure is described in detail in Algorithm
1. The subroutine cost_reduction_for_bundling in line 10 calculates
the change in description length by merging two meta-edges in the
summary graph, which is a necessary step for merging two meta-nodes.
The subroutine merge in line 18 updates the partitions P or Q and the



Algorithm 1: BM-MDL
Input: Two sets of nodes U and V and the bipartite relation

R⊆U×V
Output: Partition of U , denoted as P and partition of V , denoted

as Q, summary graph S⊆ P×Q
/* Initialization step */

1 P = {{u}|u ∈U}; Q = {{v}|v ∈V}
2 S= {({u},{v})|(u,v) ∈ R}
3 ∆Lmax = 1
/* Iterative merging step, until no cost reduction
is possible */

4 while ∆Lmax > 0 do
/* Merge clusters in P */

5 p0 = random_select(P)
6 ∆Lmax = 0, pmax = unde f ined
7 for p ∈ two_hop_neighbors(p0,S) do
8 ∆L = 0
9 for q ∈ neighbors(p,S)∪neighbors(p0,S) do

10 ∆L+=
cost_reduction_ f or_bundling((p,q),(p0,q),R,S)

11 end
12 ∆L+= βP
13 if ∆L > ∆Lmax then
14 ∆Lmax = ∆L, pmax = p
15 end
16 end

/* Merge two clusters if cost reduction is
possible */

17 if ∆Lmax > 0 then
18 merge(p0, pmax,R,S)
19 end

/* Same procedure as for Q... */
20 end
21 return P, Q, and S

summary graph S by merging two meta-nodes. In Appendix we provide
more detail on the two subroutines cost_reduction_for_bundling and
merge. In each iteration, the algorithm computes the description length
reduction for all the hop-2 neighbors of a node. Assuming that the
nodes have average degree of d, O(d2) hop-2 candidate pairs have to
be checked for each iteration [29].

4.2 Speeding up With LSH

The basic version of the algorithm is extremely time consuming due
to the need to compute and compare the potential cost reductions for
merging each pair of clusters with 2-hops in the bipartite graph. To
speed up the algorithm, we employ locality sensitive hashing (LSH)
[22], which is an efficient method for nearest neighbor search. We use
LSH to efficiently identify the clusters with the most similar bipartite
connections measured by Jaccard similarity. The procedure is described
in Algorithm 2. Since LSH allows very efficient search for nodes with
similar bipartite connections, the number of candidate pairs to check is
much less than O(d2) [22].

Notice that the inner while loop in Algorithm 2 is similar to Algo-
rithm 1 except that now instead of identifying the best clusters to merge
in the hop-2 neighbors, we only search among those pairs of clusters
with Jaccard similarity coefficient above a certain threshold θ (line 12)
which can be efficiently done approximately with LSH [22]. Using the
same example in Fig. 2 and above, with a proper setting of θ , if node 1
is first chosen, the algorithm will compare with node 3 only since they
have the greatest similarity of connecting edges, eventually 1 and 3
will be merged as the description length will decrease. The outer loop
sets θ at a relatively high value (close to 1.0 as in line 4) initially and
gradually decrease it by a fixed decay rate λ . This allows the algorithm
to prioritize the most similar clusters in early iterations but still being
exhaustive in the search at later stages.

Algorithm 2: BM-MDL-LSH
Input: Two sets of nodes U and V and the bipartite relation

R⊆U×V
Output: Partition of U , denoted as P and partition of V , denoted

as Q
/* Initialization step */

1 P = {{u}|u ∈U}; Q = {{v}|v ∈V}
2 S= {({u},{v})|(u,v) ∈ R}
3 ∆Lmax = 1
4 θ = 0.99, θcuto f f = 0.1, λdecay = 0.9
/* Iterative merging step */

5 while θ > θcuto f f do
6 TP = build_lsh_table(P,S,θ)
7 TQ = build_lsh_table(Q,S,θ)
8 while ∆Lmax > 0 do

/* Merge meta-nodes in P */
9 p0 = random_select(P)

10 ∆Lmax = 0, pmax = unde f ined
11 for p ∈ query_lsh_table(p0,TP) do
12 ∆L = 0
13 for q ∈ neighbors(p,S)∪neighbors(p0,S) do
14 ∆L+=

cost_reduction_ f or_bundling((p,q),(p0,q),R,S)
15 end
16 ∆L+= βP
17 if ∆L > ∆Lmax then
18 ∆Lmax = ∆L, pmax = p
19 end
20 end

/* Merge two clusters if cost reduction is
possible */

21 if ∆Lmax > 0 then
22 merge(p0, pmax,R,S)
23 end

/* Same procedure as for Q... */
24 end
25 θ∗= λdecay
26 end
27 return P, Q, and S

4.3 Evaluation of robustness and speed

In this section we present the experiments to evaluate our technique in
terms of robustness and speed. The evaluation takes references from
other similar bipartite relation summarization technique including the
most recent SCMiner [11]. We also include a binary matrix reordering
algorithm named Cross-association (CA) for reference [5]. We use the
Python implementation for all the four algorithms. SCMiner, CA and
BM-MDL-LSH use Numpy 1 which wraps C for numerical computa-
tion. We run the experiments on a Mac (OS Version High Sierra) with
2.3GHz Intel i7 CPU with 16GB RAM.

We first evaluate the robustness of our algorithm (BM-MDL-LSH)
by visually inspecting the partitioning results for different bipartite
graphs with ground truth co-cluster structure. The results are shown
in Fig. 3. We generate three synthetic datasets in the same way as in
SCMiner [11]: an empty set with no co-cluster structures Fig. 3(a), one
with two one-to-one relations (Fig. 3(b)), and one relatively complex
graph with more node clusters (Fig. 3(c)). For each synthetic dataset
we increase the noise gradually to 10%, 30% and 50% by creating
additional or missing edges in the bipartite graph. It can be observed
that overall BM-MDL-LSH has a good robustness over noise. Our
method creates few debris, as shown in an empty set Fig. 3(a) that when
noises are increasing, the partition structure is less likely to break into
more concrete pieces and the overall structure is maintained.

To evaluate the speed and the scalability the algorithm, we compare

1http://www.numpy.org/



Fig. 3. Illustration of partition results using three synthetic datasets with
different ground truth co-cluster structures as shown on the left of the
figures. Each partition is computed three times with noise equal to 10%,
30% and 50%. The result shows that the BM-MDL-LSH algorithm is
robust to noises in the data.

the running speed across SCMiner, CA, BM-MDL and BM-MDL-LSH.
SCMiner and BM-MDL are similar [11, 29] since they all use 2-hop
search to find candidate pairs of nodes to merge. In the experiment, we
use the 1M MovieLens dataset [16]. The dataset contains 1M movie
ratings from ∼6000 users on ∼4000 movies (the density is ∼4%). We
compute the running speed by gradually increasing the sampling rate
of the movies and the users. The results in Fig. 4 show that replacing
the 2-hop search with LSH drastically reduces the running time of
BM-MDL. Based on the calculation it improves the speed by more
than 10 times for the full dataset. In the meanwhile, SCMiner cannot
finish under reasonable time constraints — the running time exceeds 1
hour already for 50% data. Compared with the closest candidate CA,
BM-MDL-LSH achieves around three times speed gain, which makes
it a more practical choice for interactive bipartite relation exploration
where the analyst can iteratively select different subsets in the data and
run the algorithm to discover the underlying co-clusters.

Besides that we also further verify that BM-MDL-LSH does not
introduce significant degradation in the results when compared to BM-
MDL, in terms of description length reduction. We compare the percent-
age of reduction in description length in Fig. 4 for the two algorithms
running on the sampled 1M MovieLens data, with the same parameter
settings for α , βP and βQ. The result shows that BM-MDL-LSH in fact
improve the results, which can be explained by the higher threshold
(close to 1) we set for LSH at the initial runs that prevents dissimilar
pairs of nodes from being merged. In the meanwhile, with an aggres-
sive setting of β s (to enforce less cluster numbers), BM-MDL groups
even dissimilar nodes in the initial iterations, which results in far from
ideal reduction in the description length.

5 DESIGN REQUIREMENTS

While creating the visual representations and analytics system we faced
many design decisions. To formulate our desiderata we interviewed
a group of data scientists in the automotive industry, whose main re-
sponsibility is to analyze large amount of vehicle log data capturing the
occurrences of different fault signals in cars. One typical question they
are trying to answer with such log data is: are there any groups of cars
that exhibit the same set of symptoms over the course of their lifetimes?
Insights like this enable large scale troubleshooting and exposes hidden
market segments since cars with similar faults will likely need common
parts for replacement or similar services in the repair shops. We list the

Fig. 4. Upper: comparison of running times of SCMiner, CA, BM-MDL
and BM-MDL-LSH on the 1M MoiveLens dataset [16] with different
sampling percentage. BM-MDL-LSH consistently outperforms others in
terms of running speed. We discard all the results that require more
than 1200s to complete in the plot. Lower: comparison of the description
length reduction of BM-MDL and BM-MDL-LSH. It shows that BM-MDL-
LSH does not degrade the basic methods and even outperforms it in
most of the cases. For more detail please refer to Sect. 8.

analytic tasks gathered from the interview in the first column in Table 1.
We further investigate the possibility of generalizing the tasks in

vehicle log analysis to other application domains. In Table 1 (column 2)
we first generalize these tasks for an abstract bipartite graph with node
attributes. Then we instantiate the analytic tasks for another real-world
application: roll-call vote analysis. The instantiated tasks are also valid
and critical in the corresponding application domain (political science)
as verified by a domain expert2. Eventually we aim at designing a
system that can address a core set of analytic tasks that appears in a
wide range of applications applying bipartite graph to model the key
relations in the data.

We categorize the tasks in Table 1 into two groups (T.a1-4 and
T.b). T.a1-4 focus on the topological structure of the bipartite relation.
Applying the graph summarization algorithm (BM-MDL-LSH) and
visualizing the aggregated result help analysts quickly gain an overview
of the data to support T.a1-3. However, the summary graph S alone
is an inaccurate representation of the original data. To help analysts
better assess the significance and reliability of the aggregated bipartite
relations (T.a4), we also need to visually encode the amount of cor-
rections C needed to recover the original graph. T.b focuses on the
attribute values of nodes and how they are associated with the bipartite
connections. The domain-specific attributes (e.g. engine type in vehi-
cle data, gender or occupation in movie preference data, and party in
roll-call votes data) add context to further understand and interpret the
topological structure.

Besides supporting the analytic tasks described above, the system
should also enable detail-on-demand data exploration (R1) since a
static, high-level visual summary of data is seldom sufficient and ana-
lysts need to interactively drill down to the details for verification or
identify more fine-grained structures in the data. Furthermore, the co-
clustering algorithm creates node clusters and meta-edges with varying

2We interviewed a research scientist working in the area of political science.



Use case 1: vehicle fault analysis
(R⊆ vehicles × faults)

General case: bipartite graph analysis
(R⊆U×V )

Use case 2: roll-call vote analysis
(R⊆ legislators × bills)

Identify vehicles with similar faults T.a1 Identify nodes in U with similar bipar-
tite connections

Identify legislators that vote similarly

Identify faults that co-occur in cars T.a2 Similar as T.a1 for V Identify bills voted by similar legislators
Compare faults that occur in different vehi-
cle clusters

T.a3 Compare linkages between node clus-
ters in U and V

Compare bills voted by different clusters of
legislators

Assess the deviations of fault occurrence pat-
terns for vehicles in the same cluster

T.a4 Assess the amount of corrections
needed to recover R from S

Assess the deviations of voting patterns for
legislators in the same cluster

Compare fault occurrences for cars with dif-
ferent shared properties e.g. engine types

T.b Compare bipartite connections for nodes
with different attribute values

Compare voting records of different parties

Table 1. Task analysis. The two use cases correspond to the example usage scenarios are described in Sect. 7.

strengths. To help the analysts identify salient patterns in the data we
should provide filtering mechanisms (R2) accordingly.

6 THE VIBR SYSTEM

We have designed VIBR to address the analytic tasks and design
requirements discussed in Sect. 5, based on the summary graph gener-
ated by our technique described in Sect. 3. VIBR allows users to gain
an overview of large scale bipartite relations with the summary graph
(T.a1-4), adjust the granularity of the visualization to drill down into
details (R1), filter the data to focus on the significant and salient cluster
structures (R2) and apply the information encoded in domain specific
node attributes for comparison, explanation and verification (T.b).

6.1 Visual adjacency list
To support scalable visual exploration, we design an adjacency list
style visualization which is illustrated in Fig. 5 (b). The visualization
represents the clusters on one side of the graph (i.e. clusters in U) as
different rows and their outgoing connections to clusters on the other
side (i.e. clusters in V ) as colored blocks stacked from left to right.
Different colors represent different node clusters in V . The height and
width of the blocks are proportional to the number of nodes contained
in the two clusters. Some blocks are not entirely filled to indicate that
there are missing edges in the original graph. The filled height of the
blocks is determined by the density of the edges. The density is the
number of edges between two clusters p ∈ P and q ∈ Q divided by the
maximum number of possible edges.

density(p,q) =
‖p×q∩R‖
‖p‖ · ‖q‖

(2)

density(p,q) = 1 if the edges between p and q form a bi-clique. The
blocks are sorted from left to right based on the density of the edges
connecting the two clusters of nodes.

Compared with other visualization techniques such as node-link
diagram with two parallel lists of nodes (Fig. 5(a)), flow map (Fig. 5(c))
and adjacency matrix (Fig. 5(d)), the visual design results in an aligned
and compact representation. It benefits the searching and understanding
of bipartite relations and is adaptive to visualize graphs with different
degrees of density. The key connections in the graph are prioritized and
they can be easily identified by scanning vertically.

In flow map (Fig. 5 (c)) the aggregated nodes in P and Q are arranged
in two parallel vertical lists and the aggregated links are drawn as
curved edges connecting the corresponding nodes. The widths of
the edges are modulated based on the density value computed with
Equation 2. One advantage of the design is that it allows the labels
to be placed horizontally which can greatly improve the readability
and interpretability of the visualization. This advantage, however,
diminishes when the graph becomes much larger with thousands or even
more nodes. Our major concern about the flow map is the visual clutter
caused by the edges crossing each other, which makes it a challenging
task to gain an overview of the bipartite connections and compare
subsets of data, even for graphs at a moderate scale. Recent works
identify bi-cliques in the graph and bundle the edges correspondingly
to reduce visual clutter [30, 39]. However these methods may fall
short for large scale bipartite graphs which could contain many small

Fig. 5. Design alternatives: (a) original data with two parallel list of
nodes in U and V . The node clusters identified by the algorithm are
highlighted; (b) the adjacency list style design. Color encode the different
node clusters in V . Each rectangle block corresponds to an aggregated
edge between two clusters in U and V . The height and the width of the
block are proportional to the number of the nodes in the corresponding
clusters. Filled proportion in each block encodes the density of the
aggregated edge. Blocked sorted from left to right by decreasing density;
(c) flow map with aggregated nodes and edges; (d) adjacency matrix with
aggregated rows and columns. Filled proportion in each block encodes
same value as in adjacency list.

bi-cliques. Adjacency matrix (Fig. 5 (d)) is another possible design.
In adjacency matrices we use the filled proportion (similar to visual
adjacency list) to encode the density of the aggregated connections.
Adjacency matrices are suitable for visualizing dense interconnections
[14, 46]. However it lacks space efficiency: for graphs with relatively
sparse interconnections the empty blocks still have to occupy the screen
space and the ’data-ink’ ratio is not high. Besides that, it is still a
challenging task to display readable row and column labels.

One important property of the adjacency list is that by filtering the
blocks with low density and small node cluster size in U and/or V we
can obtain an extremely compact overview of the bipartite relations. In
Fig. 6 we illustrate how the visual adjacency list is gradually simplified
by increasing the threshold on density and the size of the node clusters.
This property is especially useful for creating small multiples of adja-
cency lists to compare the bipartite relations for different subsets of
data as illustrated in Fig. 7. We use animated transition in the system
to further facilitate understanding.

For the default display of the aggregated graph, we choose the ad-
jacency list style design as it is a compact design and it distinguishes



Fig. 6. Filter visual adjacency list with different threshold settings on:
(1)the density of the links, (2)the size of the clusters in U and (3)the size
of the clusters in V . From (a) to (c) the visualization is gradually simplified
and the significant patterns are highlighted.

the node clusters with vertical positions and color. Aligning rows in
this way allows the separation of node clusters at the first glance. In
most of the cases it looks much clearer. Color has scalability issues in
assigning distinct values, but choosing it over the long horizontal axis
as in adjacency matrices creates a greater utilization of space. We fur-
ther extend the palette from ColorBrewer [17] with textures [43] such
as . In the example usage scenarios with real-world data
(Sect. 7) we realize that the distribution of bipartite connections are usu-
ally quite skewed and the color plus texture encoding can create enough
variations to differentiate the major node clusters. We acknowledge
that further user study is needed for a comprehensive understanding
of the perceptual scalability and crafting a set of optimal designs for
the texture patterns. We provide a legend (Fig. 1 G©) indicating the
belonging nodes to each colored cluster. The system also supports text
search of the node names in the legend.

One drawback of the visual adjacency list is that the two sets of nodes
(U and V ) are not treated symmetrically in the visual representation.
For U , the stacked heights make it easier to compare and sum the sizes
of the node clusters. For V , the color encoding makes it easier to label
the individual nodes in different clusters with additional legend. In
practice, we also provide adjacency matrix as an alternative in the user
interface and the analyst can switch between these two representations.

6.2 User Interaction

For effective exploratory data analysis, interaction is equally important
as visual representation. VIBR supports the following user interactions:
Filtering: The system supports several filtering mechanisms such that
analyst can focus on a particular subset or the most significant clusters
in the data:
- Filter nodes by attribute values: VIBR supports selecting a subset of

nodes based on their attribute values (Fig. 1 D©) such that the analysts
can focus on a relevant segment of the data.

- Filter blocks in the adjacency list: Although the number of node
partitions can be controlled, noises in data can still produce small
pieces that reduce the available spaces and affect the clarity of color
encoding. Therefore, three filters are available (Fig. 6, Fig. 1 B©) to
remove noises based on different criteria: the density of the blocks
and the corresponding size of the node clusters in U and V . Users
can choose to keep only blocks that are significant in density or rep-
resentative in size. The purpose is to emphasize important relations
for comparison and facilitate understanding. Fig. 6(a-c) illustrates
the effect of different filtering threshold settings.

Compare bipartite connections by node attributes: For compara-
tive analysis of bipartite relations the system supports creating small
multiples by slicing on a selected node attribute (Fig. 7). In the example
illustrated in Fig. 7 we show the overview of the bipartite relation(Fig. 7
(a)) and the result of faceting it on a particular node attribute(Fig. 7
(b)). The result shows a unique group of nodes with very distinctive
bipartite connections (Fig. 7 (c)) as the blocks have complete different
color compared to the other two small multiples.
Detail-on-demand: Users can select a block to perform drill down
inspection. The visual summary provides a high-level picture of the

bipartite connections. However user may request more details for either
verifying the results of the clustering algorithm or understanding the
characteristics of a particular cluster. VIBR supports several different
mechanisms for drill down inspection:
- When a mouse hovers over a block, a tooltip is displayed to show the

number of rows and columns and the density of the block.
- When user clicks on a block, the detailed information of the corre-

sponding nodes in U and V will be displayed and updated in two
different tables (Fig. 1 F© and G©).

- When user double clicks on a block representing the high level sum-
mary, a new window will be created to reveal low level details of
the bipartite relation within it using an adjacency matrix style visu-
alization(Fig. 1 2©). The co-clustering algorithm is invoked again to
reorder the rows and columns in the matrix to highlight the existence
of any internal structures. User can click on the matrix view then
brush through the entries, so that the two data tables will be further
refined to highlight the information of the selected rows and columns.
Under certain circumstances improper parameter settings in BM-
MDL-LSH algorithm may result in an overly aggressive compression
of the data. The visualization may henceforth display nodes with dras-
tically different bipartite connections as one single cluster. Details
provided by the matrix view can help users verify the resemblance of
items within the same cluster to answer their hypothesis.

Fig. 7. The system supports creating small multiples (b) from the original
visual summary (a) by slicing on a selected node attribute. This supports
comparative analysis across different subsets of data. The result shows
a unique group of nodes with very distinctive bipartite connections (c).

Brushing on coordinated views: The system visualizes node attribute
value distributions with univariate charts: bar charts for categorical
variables, histograms for (binned) numerical variables. These univariate
charts are linked to the bipartite graph visualization: upon selection of
a cluster the filtered data are highlighted in bar charts or histograms.

7 EXAMPLE USAGE SCENARIOS

We introduce two example usage scenarios to demonstrate the effec-
tiveness of our techniques. First we work with a researcher in political
science to apply VIBR to analyze the roll-call voting records on 668
subjects (e.g., bills, amendments, resolutions, nominations) in the 115th
United States House of Representatives in 2017. The data is collected
from GovTrack.us3. The graph is constructed based on 435 individual
legislators’ votes on each subject. Overall we count 170,237 favorable
votes. For each favorable vote we create a bipartite connection between
the corresponding legislator and the subject.

The second work consists of a group of data scientists from the auto-
motive industry focusing on a dataset about around 7 million vehicles’
after-market repair information. The dataset records the diagnostic
trouble codes (DTCs) for each vehicle. We create the bipartite rela-
tions based on the occurrences of the DTCs in the individual vehicle.
Each computation and visualization is bounded within an individual car
model. Therefore, the analysis of each car model consists of vehicles
amount ranged from 2,000 to 40,000. The exact vehicle identification
number (VIN) and the DTCs are anonymized for privacy concerns.

3https://www.govtrack.us/



Fig. 8. Using VIBR to analyze the bipartite structure of roll-call votes in the US House of Representatives (115th Congress). (a) The Republicans
mainly vote for bills that favor the legislation (orange block); (b) Overview of the bipartite relations. The two small multiples summarize the
voting patterns of the Republicans and the Democrats respectively;(c) Detailed matrix view of one block; (d) Both parties vote for bills that are
non-controversial. (e) The Democrats mostly vote for amendments (gray and red block). Details can be found in Sect. 7.1.

7.1 Congress voting analysis

A background of the 115th Congress is as follows: the Republicans
occupied more than half of the seats in both the Senate and the House
of Representatives, plus they had won the presidential election in
2016. Therefore, it is clear that they act as the ruling party while
the Democrats act as the opposition party. To understand the dynam-
ics in the congress we conducted the case study with a researcher in
political science and she helped document the findings.

Overview the bipartite structure in votes. The expert first runs the
co-clustering algorithm and creates a small multiple display by faceting
on the party affiliation (Fig. 8(b)). The clusters of subjects being voted
(e.g. bills, amendments) are assigned with different colors. The relative
areas of the colored blocks in each subgraph shows that the two parties
indeed have very different sets of favored bills (or amendments and
etc.) and the representatives usually vote according to the consensus of
their parties. Besides that, based on the total filled area of the blocks,
the Republicans vote “yes” more than the Democrats, showing the
proposed bills and rules are favorable to the ruling party.

Understanding roles of different parties in the legislation pro-
cess. In both subgraphs we observe a teal colored block, indicating that
there are quite a few number of proposals supported by both the parties.
The expert clicked one teal colored block in the Democratic’s partition
(Fig. 8 1© and opened the detailed matrix view (Fig. 8(c)) for further
analysis. The co-clustering algorithm runs again to reorder the rows
and columns in the matrix view to reveal the internal structures in the
block. The expert brushed on the matrix view to review more details
(Fig. 8 2©) and observed that the Democrats mostly voted “yes” on the
subjects about “On Motion to Suspend the Rules and Pass” (Fig. 8(d)),
which refer to the act of quickly passing the non-controversial bills for
more efficiency in the legislation process.

The orange colored subjects are rarely voted in favor by the
Democrats while being supported by the majority of the Republicans
as shown by its high density in the partition (Fig. 8(b). These sub-
jects are mainly related to these categories(Fig. 8(a): 1. Agreeing to
the resolution for consideration, which means agreeing to initiate the
introduction of new bills; 2. Ordering the previous question, which
means the motion to end debate on a pending proposal and bring it to
an immediate vote; and 3. Passage, which means passing the proposal.
It shows that as the Republican party is now the majority party, more
bills and legislations of their interests and policy preferences will be
proposed by them. Therefore they will mostly agree on these actions
which are conducive to the establishment of new laws to fulfill their
party interests. On the other hand, Democrats are more likely to oppose
such initiatives and prevent the bills from passing, since those would
rarely be compatible with their interests.

On the other hand, the subjects with votes mostly from the
Democrats (gray and red blocks) fall into these categories (Fig. 8(e)):
1. Motion to recommit with instructions, which means to send back the
proposal for amendment; and 2. Agreeing to the amendment, which
refers to the amendment of several details in the bill. Our expert then
comes up with an interesting question: “Why do Democrats like to
vote for amendments?” She searches for the number of amendments
voted from the Democrats, and discovers that they support amendments
more than the Republicans. She then concludes that the Democrat’s
support on amendments is a clear reflection of the bargaining process
in the legislature, as well as the general balance of power between the
two parties. Amendment is a subtle issue, which may bring benefits
to both the Democrats and the Republicans. As the minority party in
the House, the Democrats may find the bill drafted by the Republicans
far from their ideal policy position; however, this does not mean the
Democrats have no bargaining power in the Congress. Instead, through
negotiations and even fierce debates in the House, the Democrats may
propose changes to specific articles in the drafted bill through amend-
ments, such that their interests and preferences are represented. This
helps explain why while the Democrats are reluctant to pass the bill,
they are more willing to seize the opportunity for amendments.

7.2 Vehicle fault data analysis
In the second example usage scenario, we turn our attention to a com-
pletely different application domain and analyze the occurrences of
faults in vehicles. The vehicle faults are recorded as DTC codes, which
are warning messages generated by different electric control units
(ECUs) in vehicles. They indicate abnormality in various sensor mea-
surements or other types of malfunction in the hardware and software
system. A large portion of the DTC codes are standardized across
different makes and models while some of them remain unique to in-
dividual brands. Given that the vehicles are increasingly complex, the
repair shops rely heavily on the historical record of DTCs to track the
health statuses of the vehicles. When a vehicle visits a repair shop the
mechanics will collect the on-board DTC logs and use them to perform
more precise diagnosis and identify the suitable repair procedures.

Large scale analysis of DTC occurrences in vehicles help understand
the demographics of vehicle faults, which would have great impact on
the automotive industry. It enables large scale troubleshooting such
that early warnings can be generated on the emerging fault patterns
for the auto manufacturers before the problem strikes a larger vehicle
population. Besides that, it also enables experience based repair by
analyzing the most effective repair procedures for a particular set of co-
occurring DTCs. Regardless of the size of vehicle data being analyzed,
our analyst follows similar pipeline (Fig. 1) supported by VIBR to
acquire insights that help understand the demographics of vehicle faults:



Search for co-clusters with high confidence. Our analyst’s first
action would be filtering out co-clusters by densities and sizes. In
general the bipartite relations between the vehicles and the DTCs are
quite sparse. Among the ∼3000 different types of DTCs most of them
seldom occur. To seek for meaningful and significant clusters which
can reflect the systematic fault patterns within a vehicle population,
it is necessary to focus on clusters with a larger number of vehicles
and relatively higher density. Therefore, the analyst adjusts the filters
(Fig. 1 B©) available in the system such that the dense and significant
blocks become more visible. (Fig. 1 A©) shows the filtered result. There
are around 10 large groups of vehicles with different combinations
of co-occurring DTCs. It reveals that vehicle repair and maintenance
requires highly customized services and inspecting the data visually is
an effective way to uncover such multi-class situation.

Compare the co-occurring faults for different clusters of vehi-
cles. The vehicle clusters differ by either having a unique set of DTCs,
or they could have a common set of DTCs but differ by some additional
ones. For example, the temperature sensor problems (yellow block,
Fig. 1a) only appear in one of the vehicle clusters, independent of all
the other DTCs. While the other two groups of vehicles (Fig. 1 b) share
a similar set of DTCs (purple+ pink blocks) but differ by additional
seat belt problems (light green block). Based on such observations the
analysts can isolate different sets of vehicles for focused analysis.

Analyze the correlation of fault patterns with vehicle properties.
Given the overview the analyst wants to understand whether the fault
patterns are associated with a particular subpopulation of vehicles that
share the same properties such as engine type or country. This can be
done by partitioning the vehicles on a selected property and separating
the overview into small multiples for comparison. For example, in
Fig. 1 1©, each small multiple displays a summarized bipartite relation
for a subset of vehicles with the same engine code. The analyst finds
out that the sensor faults (orange) and pressure actuator faults (pink)
only occur in vehicles with a particular type of engine (Fig. 1 c).

Inspect details in the matrix view. To obtain detailed information
the analysts open the matrix view. In Fig. 1 2© we give an example
where a dense purple colored block is double clicked and the matrix
view is displayed for the block showing the occurrences of DTCs in
individual vehicles. The analyst further brushed on the corresponding
entries to obtain fine-grained information of the vehicles and the DTCs
such as the VIN number and the body type of the vehicles (Fig. 1 F©)
and the description of the DTCs (Fig. 1 G©).

8 EXPERT INTERVIEW

After recording the exploratory analysis process and findings from the
experts in the automotive industry and political science respectively, we
gathered feedback on the effectiveness and usability of the visualiza-
tions and their thoughts on potential extensions/other applications with
a few guiding questions, following the suggestions proposed in [28].

Visual design. Overall, the domain experts appreciate the clarity
and novelty of the summarization as well as the visualization output.
Our political science expert looks forward to not only examining votes
for legislative bills, but also the exact content of it. Given the summa-
rization now available, she can analyze the importance of certain policy
issues through text analysis of the terms and phrases, which contributes
to agenda setting. She believes text visualization techniques like word
clouds can seamlessly be incorporated into the current system to help
produce more insights regarding political issues.

Outlook to further impact. The domain experts from the automo-
tive industry wants to add more critical labeling information in the data
such as parts that are replaced in a vehicle. These can be associated with
the DTC clusters identified by the algorithm, allowing repair shops to
perform faster and more accurate data-driven diagnostics and even alert
drivers for potential failure. Furthermore, our political science expert
would like to apply the current techniques to help her research in the
area of international political economy to understand the contemporary
globalization pattern. She would like to summarize the trade between
countries distributed in different geopolitical regions and compare the
patterns over a period of time. She believes that it can revolutionize the
traditional way of showing data within her research community.

9 LIMITATIONS AND FUTURE WORK

Scalability. Perceptual scalability - The current visual design can
distinguish around 40 node clusters in V without much confusion using
12 distinct colors and three different texture designs. Due to human’s
limited capability to distinguish colors within certain hue differences it
is unlikely that the number will scale too much. It is indeed possible
for some bipartite graphs to contain many fragmented co-clusters. To
avoid overwhelming the analysts, one way to improve the perceptual
scalability is to examine other attributes and prioritize the attention
given to certain co-clusters. Besides that, we also plan to conduct
controlled user studies to evaluate the effectiveness and the scalability
of the texture design for encoding categorical variables. Interactive
scalability - Although we have speed up the algorithm tremendously
through LSH, it still cannot run in interactive rate (< 100ms) for large
scale dataset (1M edges in Sect. 4.3). We plan to explore more strategies
to further speed up the algorithm.

Weighted bipartite relations. Our algorithm only consider binary
bipartite relations. Many real-world data contain weighted bipartite
relations: customers purchase the same items for multiple times in
sales records, words or phrases appear multiple times in a document,
users give a range of ratings (e.g. from one to five) on books and
movies instead of binary likes and dislikes and genes have different
level of expressions in bodies. In such cases simply thresholding the
values to create a binary bipartite graph may not be a good option.
We will continue to explore the possibility of incorporating numerical
regularities to compress weighted bipartite relations and adapt the
visualization and interaction techniques for weighted co-clusters.

Extensibility to multi-mode graphs. Our algorithm and visual-
ization design currently only focus on summarizing bipartite relation
between two sets. In many real-world applications there are more
than two types of interconnected entities. For example, bibliography
data contain several different set of entities including authors, papers,
keywords and journal/conferences. The vehicle fault data may contain
entities including faults, vehicles and suppliers of the corresponding
parts. Designing a meaningful two-part representation for such multi-
mode relations and applying the MDL principle to extract the key
patterns that span across multiple dimensions would be a promising
research direction to explore in the future.

Detect overlapping co-clusters. Our problem formulation currently
supports identifying disjoint node clusters. However, it could be imag-
ined that in some application scenarios overlapping node clusters could
be quite meaningful, e.g. researchers belonging to several different
communities. Addressing these application scenarios requires chang-
ing the formulation of the two-part representation, the optimization
algorithm, as well as the visual designs to support a different set of user
tasks.

Application domains. There are a myriad of real life examples and
applications in which we can harness the power of such techniques
to conduct more sophisticated human-centered analysis. For example,
transaction data in market basket analysis, which uses association rules
mining to acquire insights, can be benefited by interactive visualization
of summarizing the bipartite structure between the transaction logs and
the generated frequent item-sets.

10 CONCLUSION

In this paper, we visit the problem of summarizing large scale bipartite
relations and introduce a novel interactive visual analytics approach
to address the challenges. First, we propose an information-theoretic
co-clustering algorithm based on the MDL principle. The algorithm
runs efficiently on large scale bipartite graphs which makes it suitable to
support interactive visual exploration. After that, we present a compre-
hensive visual analytics system with a novel visual adjacency list style
design and multiple levels-of-detail to facilitate interactive exploration
of large scale bipartite graphs with multivariate node attributes. We
present example usage scenarios with two real-world dataset and collect
feedback from the domain experts to demonstrate the effectiveness of
the proposed approach.
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