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Abstract

Many applications can be modeled as a graph with additional attributes attached to the nodes. For example, a
graph can be used to model the relationship of people in a social media website or a bibliographical dataset.
Meanwhile, additional information is often available, such as the topics people are interested in and the music
they listen to. Based on this additional information, different set relationships may exist among people. Revealing
the set relationships in a network can help people gain social insight and better understand their roles within a
community. In this paper, we present a visualization system for exploring set relations in a graph. Our system is de-
signed to reveal three different relationships simultaneously: the social relationship of people, the set relationship
among people’s items of interest, and the similarity relationship of the items. We propose two novel visualization
designs: a) a glyph-based visualization to reveal people’s set relationships in the context of their social networks;
b) an integration of visual links and a contour map to show people and their items of interest which are clustered
into different groups. The effectiveness of the designs has been demonstrated by the case studies on two repre-
sentative datasets including one from a social music service website and another from an academic collaboration
network.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentations]:
User Interfaces—Graphical user interfaces (GUI)

1. Introduction

Set relations appear in various contexts in data analysis. In
this paper, we focus on the visual representation of set rela-
tions in a social network where each person (node) is related
to a set of items. This study is motivated by the increasing
popularity of social websites such as Twitter and Facebook
where people take an interest in different topics and share
their favorite readings or music. Meanwhile, other datasets
such as bibliographic database can also be described in the
same way as it contains academic collaboration networks
and researchers have different ranges of research interests.

This kind of data poses many interesting problems for vi-
sualization. In particular, we intend to develop effective vi-
sual means for 1) studying the correlation between set re-
lations and topological distances in the social network; and
2) observing the distribution and overlaps of the sets with re-
spect to the clusters of the items. The methods can be used to

observe the effect of homophily, i.e., “similarity breeds con-
nection” or “birds of a feather flock together” [MSLC01].
Meanwhile, visualizing the set relations over the item clus-
ters can reveal the “traces” of individuals or groups of peo-
ple in the information context where the items (such as top-
ics or music) are organized according to their semantic re-
lations (i.e. similarity). In summary, the set relations can be
observed from two complementary perspectives, in the con-
text of a social network and in the context of item clusters.

Many visualization techniques for set relations have been
developed. Existing set visualizations can be roughly di-
vided into two categories depending on the most impor-
tant relation it intends to depict: (1) those that utilize spa-
tial positioning to encode some primary dimension (such
as geographical location) of the items, where the set re-
lations are sketched on top of the visualization with en-
closing contours or continuous lines. This includes Bub-
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ble Sets [CPC09], LineSets [ARRC11] and most recently
Kelp diagrams [DvKSW12]; (2) those that emphasize set
relations such as overlappings and subset/superset relations
while other semantic relations between the items are not
taken into account. This category of visualizations includes
Venn diagram and Euler diagram [SAA09] [RD10]. To the
best of our knowledge, there have been no previous visual
means for visualizing set relations in the context of a social
network.

In this paper, we propose visual designs depicting the set
relations in a social network from two perspectives: 1) a
node-link view with nodes represented by glyphs showing
correlations between the social distances and the set rela-
tions (subset / superset / overlap); and 2) a visual design de-
lineating sets on a substrate visualization (e.g. contour map)
which shows the clusters of all the items given their simi-
larities, and allows viewers to observe the distribution of the
items in the sets. We apply the above techniques to two real
datasets. These include one from a social music service web-
site and another from an academic collaboration network.

In summary, the major contributions of this paper are:

• a glyph design that facilitates the analysis of homophily
in social networks where each node corresponds to a set
of items;

• a visual design and layout method for set relation visual-
ization with respect to clusters of items;

• two case studies based on real datasets that demonstrate
how the use of the above two visualizations can lead to in-
teresting findings in some application domains including
online social networks and academic collaboration net-
works.

The rest of the paper is organized as follows. We first in-
troduce the related work in Section 2. The overview of our
system is provided in Section 3, followed by the details of
the visualization design in Section 4 and the implementation
in Section 5. We then present the experiment results on two
datasets and discuss the limitations of our method in Section
6. Finally, in Section 7, we conclude the paper and suggest
some future research directions.

2. Related Work

Our work draws on research in several categories. In this sec-
tion, we first review the current existing visualization tech-
niques for set relations. Then we discuss some recent re-
search works on the visual analysis of graphs.

2.1. Set Relationship Visualization

The representations of set relationships have been studied
from the very early days. Euler diagram and Venn diagram
have been used extensively. This problem has also received
attentions from visualization researchers.

Collins et al. [CPC09] presented Bubble Sets which

uses bubble-like shapes to connect items belonging to the
same set. The Bubble Sets approach is especially effec-
tive to reveal set relations over items which have fixed lay-
outs like maps. Similar to the Bubble Sets, the LineSets
method [ARRC11] uses smooth lines to connect items in
the same set where the items also have fixed layouts. Din-
kla et al. [DvKSW12] developed the Kelp diagram, which
is a most recent algorithm for set visualization over preallo-
cated items. The algorithm employs edge routing in order to
avoid misleading crossovers or wrong set item inclusions.

Another line of set visualization techniques does not as-
sume a fixed layout of the items. The items are spatially
grouped such that the relations between sets are more rec-
ognizable. Simonetto et al. [SAA09] and Stapleton et al.
[SRHZ11] developed fully automatic methods to generate
Euler-like diagrams for the visualization of overlapping sets.
Riche and Dwyer [RD10] hierarchically organized the inter-
secting sets such that the Euler diagrams can be more easily
drawn.

Moreover, sets can be interpreted as hyperedges in a hy-
pergraph, where the items are the vertices and each hyper-
edge could consist of multiple vertices. Methods for drawing
hypergraphs have been studied in the graph drawing commu-
nity [JP87] [Mäk90] [BE01]. Researchers have also investi-
gated the existence of various types of support that would
be applied in the drawing of hypergraphs. These include
planar [KKS09], path-based [BCPS12], and cactus support
[BCPS11].

In this paper, we propose a composited visual design for
visualizing set relations with respect to the clusters of items
in the data. We also propose methods to address the trade-
off between the geometrical simplicity of the visual links
denoting each set and the preservation of the item locations
with respect to their corresponding clusters.

2.2. Visual Analysis of Social Networks

Many of the current visual analysis systems focus on de-
picting the topologies of the graph structures [vLKS∗11]
through node-link diagrams, adjacency matrices, or com-
binations of the two. Some integrate statistic information
to enable more effective visual detection [WFC∗06] [PS08]
[BCD∗10] [KMSH12]. Many of the statistics are node met-
rics derived from either local topological properties (e.g.
node degree, clustering coefficient) or global structures (e.g.
betweenness centrality). The metrics are directly encoded as
visual attributes such as spatial position or color.

One of the future directions for graph visualization as
noted in a recent survey [vLKS∗11] is the integration of var-
ious data types in the visual analysis of graphs. Research
efforts have focused on the visualization of heterogeneous
relations (graph involving multiple types of nodes and rela-
tions) [CSL∗10] [DRRD12], and graphs with node attributes
[SA06] [Wat06]. We identify that in real social network data,
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each person could be associated with a set of items. For ex-
ample, in academic collaboration networks, each researcher
is interested in different topics, and in online social net-
works, each user could be affiliated to a wide range of items
such as the music he listens to and the movies he watches. In
this kind of social network, it would be of interest to study
the effect of homophily [MSLC01], which means that social
links tend to exist among persons with similar characteris-
tics. In this paper, we propose a novel glyph based visual
representation for studying the correlation between the set
relations and social distances.

3. Overview

In this section we present our research problems, and give an
overview of the visual designs in our system.

3.1. Research Problems

We design the visualization such that they can be used to
visually analyze the set relations in a social network. In par-
ticular, we identify the following research questions:

• Does the distribution of people’s interests tend to be lo-
calized in a social network? Can we observe the effect
of homophily? For example, in an academic collaboration
network, Do researchers who never collaborate have dif-
ferent research interests? In an online social network, do
friendship links correlate to similar interests?

• For several persons (or groups), can we observe the dis-
tributions and overlaps of their interests with respect to
the clusters of items? Combining the set relations with
the cluster information could be beneficial since the item
clusters could provide contextual information for analyz-
ing set relations. For example, we can get some sense of
which clusters contain a lot of set intersections and in
which clusters the items belong uniquely to some sets.
Moreover, when there is little overlap between the inter-
ests of two persons, it is possible that items from different
sets could belong to the same clusters, thus suggesting an
implicit relation between the sets of interests of two per-
sons?

3.2. Basic Idea

We propose two visual designs to address the research ques-
tions mentioned above. These include a glyph design, which,
when combined with the node-link diagram, can reveal peo-
ple’s set relationship in the context of the social network
(Fig.1 left), and an integration of visual links and a contour
map to show the items of interest for several people with
respect to the clusters of items (See Fig.1 right).

The glyph design can be integrated to a node-link view of
the social network, and this can provide an overview of the
set relations in the social network. Each glyph encodes the
set relations of a person with all others, together with their

distances in the graph. The glyph design shows the correla-
tion between social distances and set relations and enables
visual identification of communities with localized interests.
The design is explained in detail in Section 4.1.

From the overview, several persons can be selected to fur-
ther examine the items of interest of each person and their
intersections with respect to the clusters of items. Here a vi-
sual design with two layers is employed. In the background
layer, a contour map is used to show the clusters of the items.
Visual links connecting items in the same sets are drawn on
top of the contour map. Based on this design, it is possible
to visually correlate the set relations depicted on the fore-
ground to the item clusters as revealed by the contour map.

social graph set items

co-authorship

researcher

keywords

Figure 1: An overview of the framework for analyzing set
relations. Left: glyphs integrated with a node-link diagram.
Right: set visualization over item clusters. The example of
publication dataset is used for illustration. Three nodes are
selected on the left, and the items in the sets are depicted by
visual links on the left.

4. Visual Design

In this section, we describe our visual designs in detail and
the reasons that we choose these designs.

4.1. Glyph Design

For each node i, we draw a glyph encoding the information
of its item set overlap and social distances to all the other
nodes. We use an asymmetric measure to compute the over-
lap of Si to S j by |Si ∩ S j|/|Si|, while other measures such
as the Jaccard coefficient can also be used. The social dis-
tances from node i to the other nodes are the shortest path
distances on the graph in our implementation, while other
distance metrics can also be applied.

There are several approaches to design the glyph that can
integrate the overlap and distance information. They are dif-
ferent in their visual clutterness and information loss. Scat-
terplot (Fig. 2(a)), for example, incurs no loss in informa-
tion but will become harder to read when the scatterplots
for different nodes are drawn on the same screen. On the
other hand, the correlation between the overlap and the dis-
tance can be computed and encoded with node size or color
intensity. This introduces less visual clutter, though details
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could be lost. Fig. 2(b) illustrates an alternative design. It
is a gray-scale stacked histogram. The depth of the shade
encodes the amount of overlap. The deeper the shade the
more the overlap. In the histogram, each bar is composed of
several segments. Each segment corresponds to the group of
nodes which are at the same distance from node i and have a
similar amount of set overlap with node i. The segments are
vertically arranged by their shade. The height of each seg-
ment is proportional to the percentage of members in this
group to all members with the same distance from i. The
height can be scaled by Si, the number of items in the set, as
illustrated in the case study figures in Section 6. The stacked
histogram can be further replaced with a stacked graph such
that the shapes would have simpler geometry, as illustrated
in Fig. 2(c).

Color hue as another visual channel is utilized to indicate
whether a person’s item set is larger than most of its neigh-
bors in the graph. Diverging hues are assigned to each of
the nodes, to encode the information as a binary value: red
color represents that the size of the corresponding item set is
larger than half of the neighbor nodes, and blue color repre-
sents the opposite. With this color encoding, the nodes with
fewer items and are potentially subsets of the others can be
easily identified. These nodes have blue hues and are more
darkly shaded.

Overall, the resulting glyph features a composition of
visual channels including intensity of color, hue, size and
shape. After integrating the glyph to the node-link diagram,
the visualization could reveal interesting patterns concerning
groups of nodes and outliers. Some of our findings after ap-
plying the glyph view to real social network datasets include:
1) densely connected communities with highly localized dis-
tribution of interests; 2) subgroups in the social network
where the existence of social links are highly correlated to
their interest overlaps, demonstrating the phenomenon of
homophily; 3) persons having interest overlap with distant
nodes. These will be discussed in detail in Section 6.

distancedistance

o
v
e
rla

p

distance

overlap

(a) (b) (c)

Figure 2: Design choices for glyphs encoding set relations
and social distances for each node to all the other nodes in
the social graph. (a)scatterplot; (b) grayscale stacked his-
togram; (c) stacked graph.

4.2. Set Visualization

Contour map, which is a density based visualization, can
be used to summarize the overall distributions of the items,

and recently it has been employed in many visualization sys-
tems [CSL∗10] [ZBDS12]. Contour map gives a global con-
text on top of which the sets will be overlaid. The advantage
of using the density based visualization is that it can main-
tain scalability when there is a large number of items and in
general it would be easier to detect the correlation between
set relations and the global distributions of items given that
the overall distribution is summarized in a concise way.

How to visually group the items in the same set is an-
other design choice to make. There are several user tasks to
be supported, including basic set relation reading tasks: (T1)
find the items in a set; (T2) identify the sets that an item be-
longs to; and (T3) identify the set intersections. Moreover,
combining the set relations with the item cluster information
could enable the user tasks inculding: (T4) identify the dis-
tribution of items in a set with respect to the item clusters;
and (T5) find implicit overlap between the sets.

Several options to visually group the items and to sup-
port the above tasks have been considered. Color (hue) and
shape are some visual channels that can be utilized to visu-
ally group items, although they could be less effective than
direct visual linking [SWS∗11]. For visually linking items,
one choice is to use enclosing contours, such as Bubble-
Sets [CPC09]. This method would interfere with the under-
lying density based visualization though. We choose to use
spanning tree like shapes to visually connect the items in the
same sets, which is a generalization of the denotation used
in Lineset [ARRC11] and similar to the ones in the Kelp
diagram [DvKSW12]. Color-coded concentric circles as in
Lineset and Kelp diagram are also used to indicate the set
membership for each item (T2).

Using visual links to connect related items faces the chal-
lenge of scalability with respect to the numbers and distri-
butions of items in the sets. Branchings and zig-zags of the
visual links could make it harder to read the items in the
sets (i.e., task T1 and T4) and could incur visual clutter for
the detection of meaningful relations between the sets (i.e.,
task T3 and T5). For the visualization to be effective, it is
therefore desirable to have smooth visual links with a small
number of branches such that it takes less effort to visually
follow the paths connecting the items [War00]. Moving the
items slightly away from their original positions is a strategy
that can be applied to simplify the geometry of the visual
links. Meanwhile, for users to effectively perform task T4
and T5, the positions of the items in the original MDS lay-
out should be preserved as much as possible. Therefore a
trade-off should be made between two general aesthetic cri-
teria in the visual link layout algorithm: (A1) the simplicity
of the visual links; (A2) the preservation of original item lo-
cations. The details of the layout algorithm will be explained
in Section 5.
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5. Implementation

In this section, we describe the implementation of the view
depicting set relations over item clusters.

5.1. Contour Map Construction

The input to this step is the entire set of items and the simi-
larity between pairs. Multidimensional scaling (MDS) is em-
ployed to assign each item a position in the plane. MDS ar-
ranges items with a higher degree of similarity between each
other in close proximity, and groups of similar items form
visual clusters. Based on this initial layout, kernel density
estimation (KDE) can be used to derive a smooth represen-
tation of the item distribution on the plane. Isocontours are
traced by following points of the same density. The contours
are then filled with transparent color and the additive blend-
ing effect creates regions that are more shaded indicating
clusters of items. The resulting contour map is a visual ab-
straction of the discrete distribution of the items in the MDS
layout.

5.2. Visual Link Layout

The contour map derived from the previous step serves as a
reference map, based on which the visual links representing
the sets are drawn. As discussed in Section 4, we intend to
utilize the flexibility to move the items slightly away from
their initial positions in the MDS layout, such that less vi-
sual clutter is introduced when drawing the links. The items
should not move too drastically such that one could still in-
fer the cluster that the item belongs to from the underlying
contour map.

The following layout algorithm is implemented to draw
visual links corresponding to several selected sets Si, i ∈
{1, ...,m}. The algorithm consists of two phases:

1. Formation and simplification of a spanning tree connect-
ing all the items in

∪
i∈{1,...,m} Si, illustrated in Fig. 3;

2. Generation of visual links for individual sets based on
the “backbone” spanning tree obtained in the first step,
illustrated in Fig 4.

The motivation of the first phase is to derive a reference
backbone to draw the visual links for the individual sets. The
following are desirable properties for the backbone span-
ning tree: small number of branches, smoothness in each
segment, and small distortion to the item positions in the
initial layout. The rationale is that the backbone should be
simple in its geometry such that the visual links generated in
the second phase are not cluttered (i.e., criterion A1). Mean-
while, the items should not be moved too drastically in case
the contour map becomes invalid for showing the cluster that
the items belong to (i.e., criterion A2). Our implementation
applies the following steps to form and simplify the spanning
tree:

(a) cut

(b) fold

(c) smooth
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Figure 3: Formation and simplification of a backbone span-
ning tree: (a) hierarchical agglomerative clustering of the
items based on their euclidean distances in the initial MDS
layout; (b) the nodes are grouped based on a cut on the
hierarchy, the spanning tree are simplified (by reducing
branches) based on the grouping, where the dashed lines
are new edges; (c) the resulting branches on the spanning
tree are straightened by moving the items, where the dashed
lines indicate an approximate shape of the backbone span-
ning tree.

1. Perform hierarchical agglomerative clustering (HAC) for
all the items in the selected sets based on their Euclidean
distance after MDS layout. A dendrogram showing the
result of the clustering is visualized in Fig. 3(a).

2. Construct a spanning tree for the items based on the hier-
archical cluster. An edge will be included in the spanning
tree if it is the shortest link connecting two sibling clus-
ters. A resulting spanning tree is shown in Fig. 3(b).

3. Perform a cut on the dendrogram at a given height. Con-
sequently, the items will be partitioned into groups by
their spatial closeness (see Fig. 3(a) and (b)).

4. Fold branches on the spanning tree (see Fig. 3(b)) based
on the grouping of the items. Some edges are not on the
path for connecting different groups of items and could be
removed from the spanning tree. As in the figure, e(5,7)
is on the path for connecting group α and γ while e(6,7)
is not on any path connecting different groups. There-
fore e(6,7) could be deleted from the spanning tree. Af-
ter deleting e(6,7), n(6) is left unconnected. The strategy
we have taken is to merge n(6) to the nearest edge, which
is e(5,7). This is accomplished by deleting e(5,7) and
adding e(5,6), e(6,7) to the tree. The result of this step is
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a spanning tree which has less branches but still approxi-
mates the original shape of it.

5. Smooth the segments on the spanning tree (Fig. 3(c)). In
this step, the items are moved from their original posi-
tions such that there would be less zigzags in the shape of
each segment. A force-directed method could be applied
in this case, with items both drawn towards their origi-
nal positions and by the spring force exerted by nearby
edges.

Based on the backbone spanning tree, we draw the visual
links connecting individual sets in the second phase. Our
method first divides the tree into segments, and routes links
for each set on the segments. For each set, links from differ-
ent segments are connected to form continuous visual links
for each set. On each segment, there are items from different
sets. To depict the item membership effectively (i.e., task T1)
and to better reveal set intersections (i.e., task T3), we apply
a strategy for drawing the visual links on each segment. As
illustrated in Fig. 4, each set is assigned a lane parallel to the
segment. To draw the visual link for a set, we scan through
all the items one-by-one in the segment, and route the link to
pass through: 1) the central lane if the item on the segment
is common to multiple sets; 2) the lane assigned to the set if
the item does not belong to the set; 3) the lane assigned to
the set if the item belongs exclusively to the set. In the 3rd
case, the item is also moved to the lane corresponding to the
set.

Fig. 5 illustrates the intermediate results of our algorithm,
and the final output, for the visualization of three sets.

set A

set B

set C

items only in set C

items shared by set A, B and C

Figure 4: The simplified and smoothed spanning tree are
divided into segments (where there are no branches). In each
segment, continuous lines are used to connect the items in
the same sets.

6. Results and Discussions

We select two real datasets from different application do-
mains for case study. One is an online social network
(Last.fm) where each person is interested in a set of music
artists, and another is a professional social network (bibli-
ographical databases) where each person is related to a set
of research topic related keywords. The visualizations in the

(b)(a)

Figure 5: The intermediate and the final results of the layout
algorithm: (a) the initial spanning tree connecting all the
items and the backbone spanning tree after the first phase of
the algorithm is performed; (b) the visual links for individual
sets drawn based on the backbone spanning tree.

case study are implemented in Java with the Prefuse† infor-
mation visualization toolkit.
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Figure 6: Subgraphs from the last.fm social network with
glyphs. There are two observations: 1) in general, a larger
distance in the social network implies less overlap in inter-
ests; and 2) two groups of persons marked by the rectangles
exhibit different properties on the amount of interest over-
laps. The effect of homophily is more noticeable in group B.

6.1. Last.fm

Last.fm [las12] is a social music service website which
maintains a catalog of artists, albums, and tracks. Users of
the website can listen to music, setup personal profiles of the
artists they like, and add other users as friends. Last.fm also
provides a web-service API, which can be used for querying
information of the users and the artists. The available infor-
mation includes the tags, the number of listeners per artist,
and the similarity between two given artists.

In the case study, we used the last.fm data released in

† http://prefuse.org/
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Figure 7: Interest overlap of close neighbors in the last.fm social network. The three persons are mutually connected to each
other. However, one person has drastic difference in his interest from the other two. The others have a lot of interest overlaps in
several clusters of similar music artists.

[CBK11] which contains the friendship graph of the users
(the names of the users have been anonymized) and user
listening history information. We selected the most popular
500 artists from the dataset according to the total listening
counts. The similarity between artists is obtained through
the web service API (other measures are also available for
music artists). Artists form clusters based on the similarity
information.

In last.fm, each person is related to a set of artists that
he/she likes. We applied the glyph design to analyze the
overlap of interests between persons in the context of the
social network. Fig. 6 shows a subgraph extracted from the
friendship graph, where each node is drawn as a glyph sum-
marizing the information about their interest overlap and so-
cial distance to all the other nodes. It can be observed that
in general, there is negative correlation between the degree
of interest overlap and social distance, as most of the glyphs
have a skewed shape with peaks leaning towards smaller so-
cial distances. The use of different shades enhances the vi-
sual cue for the detection of negative correlations. Groups
with different levels of locality in interest distribution can
also be observed.

Fig. 7 demonstrates the overlapping interests of three per-
sons in close proximity in the social graph. As revealed in
the underlying contour map, there are some major clusters
of similar artists. Person A does not have much overlap with
B and C even when they are in close proximity. In particular,
it seems that only A is interested in clusters of music artists
tagged as “classic rock” and “alternative rock” on the last.fm
website. Persons B and C have a lot of overlaps over clus-

ters of artists tagged as “hard rock” and “pop punk”. More-
over, for persons B and C, even in some clusters, there are
not many explicit overlaps between them, the parallel visual
links for each set connect a lot of items from B and C and
visually indicate implicit overlapping over the clusters.

6.2. Academic Publication Data

For academic publication data, we use the InfoVis 2004 con-
test dataset [FGP04]. We applied our method to the largest
connected component in the co-authorship network of the
information visualization community which consists of 69
nodes and 156 edges. A topic-modeling technique based on
latent Dirichlet allocation (LDA) is used to extract topic re-
lated keywords from paper abstracts. We use the implemen-
tation in the MALLET toolkit [McC02] for topic modeling.
The similarity between two keywords is derived from two
sources: 1) their co-appearance in the same topic; and 2)
co-citations of the corresponding publications. Take words
that often appear in information visualization literature for
example, “graph” and “layout” would be more related than
“graph” and “architecture” or “graph” and “pipeline”.

In Fig. 8, we show the results of applying the glyph view
to the co-authorship graph in the publication data. The re-
sults also demonstrate the negative correlation of social dis-
tance to interest overlap. There are also some tightly knitted
communities where the locality of interest distribution is rel-
atively high, that is, the amount of overlap is extremely high
within short distances (typically 1 or 2). We identify exam-
ples of such communities in the figure.

The divergent color encoding with red and blue on the

c⃝ 2013 The Author(s)
c⃝ 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 8: Interest overlap on the academic collaboration
network. Two observations are: 1) there are strongly con-
nected communities with a higher level of locality of keyword
distribution and 2) there are some outlier nodes having many
keyword overlaps even with distant nodes.

nodes assists the detection of potential subset/superset re-
lations. The keywords of the nodes in the tight-knit com-
munity in Fig. 8, are likely to be covered by many of their
nearby nodes, as they are blue-colored (thus their interest is
smaller than many of the neighborhoods) and more shaded
at smaller distances (thus the degree of overlap is high in the
neighborhood). The pattern is more evident in the academic
collaboration networks in comparison with the last.fm social
network (Fig. 6).

Fig. 9(a) shows the set of keywords for three authors on
the contour map. The three authors are Peter Pirolli, George
W. Furnas and Marti Hearst. From the figure, we can see that
there are keywords in same clusters that belongs uniquely
to Peter Pirolli, including “retrieve”, “web” in one topic
cluster, and “spreadsheet”,“multivariate”, “mining” in the
other. Marti Hearst has overlap with Peter Pirolli on the key-
words “dynamic”, “tree”, “support”, “interact” while George
W. Furnas has overlap with Peter Pirolli on the keywords
“graphic”, “interface”, “design”. The three persons are at
different locations in the social network, with Marti Hearst
having direct collaboration links to Peter Pirolli and George
W. Furnas being farther away from both. Our method ap-
plies MDS to assign each item a position in the plane. As
there are different MDS algorithms and different parameters
might lead to different layouts, to test the stability of our
method with regard to different MDS layouts, we adjust the
parameters used in our MDS method and generate another
result (see Fig. 9(b)). From the figure, we can clearly see
that the visualizations from our method are stable.

6.3. Discussions

Our methods have some drawbacks. Our method can well
reveal the relationship of a small number of sets in a graph.
When there are more sets, the chance of the lines crossing
each other even when there is no set intersection is likely
to increase and the relations among these sets might be too
complicated for users to understand. It is possible to develop
a more intelligent layout algorithm which makes better as-
signment of the lanes to the sets to minimize the crossings
and further reduce visual clutter. A more plausible way is
to adopt the visualization mantra, "overview first, zoom and
filter, and then details on demand", in our system. An aggre-
gation view of all the relationships is displayed first. Users
can then zoom into a subset and identify a few interesting
nodes, and our method can be applied to reveal the set rela-
tionships of the selected nodes. After that, users can zoom
out again and select another subset of the nodes and repeat
the whole process. With this iterative exploration approach,
the relations among multiple nodes can be revealed. Another
drawback of our method is that adding glyphs to node-link
diagrams could cause visual clutter, especially when the so-
cial network is very dense. We believe rich user interactions
and intelligent layout algorithms can alleviate this problem.
For the visual link layout algorithm, one limitation of the
current method is that since the items belonging to differ-
ent sets are juxtaposed on the segments, the resulting visual
links would contain a lot of zig-zags. This problem can be
partially resolved by changing the order of the items on the
segments.

7. Conclusions and Future Work

In this paper, we proposed two visual designs for the visual
analysis of set relations in a graph. The visual designs can be
applied to analyze the set relation in the context of the social
graph and the set relations in the context of item clusters.
We applied our designs to two real datasets and discussed
the findings. In the future, we intend to apply our designs to
other kinds of datasets and also conduct more studies to eval-
uate their effectiveness. For the layout algorithm, various im-
provements could be made. For example, the branches of the
spanning tree could be folded to further reduce visual clut-
ter. When there are more sets, an algorithm different from
our current approach for assigning and drawing the visual
links on different lanes could be considered.
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(b)

Figure 9: Interest overlap of three authors in an academic collaboration network. Three authors (i.e., Peter Pirolli, George W.
Furnas and Marti Hearst) are selected from the social network. They are at different social distances from each other. (a) and
(b) show the results with two different MDS layouts respectively.
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