
ProtoSteer: Steering Deep Sequence Model with Prototypes

Yao Ming, Panpan Xu, Furui Cheng, Huamin Qu and Liu Ren

Overview L

almost N hours for delivery . restaurant is <OTHER> away food arrived cold and was spilled in the bag .62

N hours to get a <OTHER> . food was cold and manager did n't care about the poor service32

worst bloody marys in the airport . pass on by .37

prefer other locations than going to this one due to there horrible customer service . do n't recommend !1

omelet was great ! ! ! pancakes and bacon horrible . <OTHER> with cheese on point .43

great food shitty drive threw ! fuck your drive threw fuck your drive threw fuck your drive threw64

this place was pleasant service was fast and unlimited sushi . super awesome good stuff ! ! ! !23

<OTHER> food . the atmosphere is amazing service is outstanding prices are very reasonable .3

great food amazing service and one hell of a beer list much needed in <OTHER> !61

best bbq and service i have had in awhile portions are huge everything fresh and hot spread the word25

best . fresh . great service and ambience . love this place . i highly recommend this wonderful place .19

61

great place to grab an excellent meal at a very reasonable price ! friendly staff and a great environment !60

7 Prototypes Weight Prediction

Control Panel

Model Info

Dataset: yelp

Partition: train

#Prototypes: 70 (Avg. Length: 18.2)

accuracy: 0.983

Color Legend

Negative Positive

History

70 prototypes

-7 > 63

63 prototypes

-1 E1

62 prototypes

E1

Detail

great food amazing service and one hell of a beer list much needed in <OTHER> !61

great place great food and service . chick katsu bento is the dish ! !

great service great food decently priced menu . try the bacon double cheeseburger !

omelet was great ! ! ! pancakes and bacon horrible . <OTHER> with cheese on point .43

this place closes early on weekdays ! very disappointed ! make sure to call before arrival .

this place blows ! dirty loud disorganized unwelcoming environment . even the ice dispenser was n't working .

love blues service okay but best <OTHER> ever ! ! hated frog legs very bland drinks average .

great food and awesome staff . make sure you bring extra time with you . this place is hopping !

#61 #43

Encoder View Brush

Negative PositiveA

B

C

D

B1

B2

Fig. 1: The ProtoSteer interface for interactively refining prototype sequence network. The prototype overview (A) presents a list of
prototype sequences and their statistics on datasets. The sequence detail view (B) displays the neighboring sequences of selected
prototypes. The user can interactively add, delete, and revise prototypes. All edits are traceable in the editing history (C), where the
user can easily compare or revert changes. For advanced analysis, the sequence encoder view (D) projects prototypes as trajectories
with a contour map showing its neighboring hidden state distribution.

Abstract— Recently we have witnessed growing adoption of deep sequence models (e.g. LSTMs) in many application domains,
including predictive health care, natural language processing, and log analysis. However, the intricate working mechanism of these
models confines their accessibility to the domain experts. Their black-box nature also makes it a challenging task to incorporate
domain-specific knowledge of the experts into the model. In ProtoSteer (Prototype Steering), we tackle the challenge of directly
involving the domain experts to steer a deep sequence model without relying on model developers as intermediaries. Our approach
originates in case-based reasoning, which imitates the common human problem-solving process of consulting past experiences to solve
new problems. We utilize ProSeNet (Prototype Sequence Network), which learns a small set of exemplar cases (i.e., prototypes) from
historical data. In ProtoSteer they serve both as an efficient visual summary of the original data and explanations of model decisions.
With ProtoSteer the domain experts can inspect, critique, and revise the prototypes interactively. The system then incorporates
user-specified prototypes and incrementally updates the model. We conduct extensive case studies and expert interviews in application
domains including sentiment analysis on texts and predictive diagnostics based on vehicle fault logs. The results demonstrate that
involvements of domain users can help obtain more interpretable models with concise prototypes while retaining similar accuracy.

Index Terms—Sequence Data, Explainable Artificial Intelligence (XAI), Recurrent Neural Networks (RNNs), Prototype Learning

1 INTRODUCTION

In recent years we have observed a growing adoption of deep learning
models in sequence data analysis to assist decision-making. Deep
sequence models, esp. recurrent neural networks (RNN) can be used

• Yao Ming, Furui Cheng, and Huamin Qu are with Hong Kong University of
Science and Technology. E-mail: ymingaa, fchengaa, huamin@.ust.hk.

• Panpan Xu, Liu Ren are with Bosch Research North America. E-mail:
panpan.xu, liu.ren@us.bosch.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

to predict patient status by modeling electronic health records (EHR),
analyze the topic or sentiment of texts, understand audio signals and
have achieved state-of-the-art results in most applications [23, 27].

Despite their impressive performance, RNNs are often considered
as “black boxes” due to their complex architecture and massive size
of model weights. The lack of interpretability limits their adoption
in many critical decision-making scenarios, where the experts need
to understand the reasons of the prediction before deploying the model
in production. The recent data protection regulation of The European
Union also grants individuals the “right to explanation” for decisions
made by machine learning systems [35].

The urgent demand for interpretability has motivated recent research
in explaining deep sequence models. Researchers have developed a



variety of post-hoc explanation techniques to unveil the inner workings
of RNNs by visualizing hidden state values [21], identifying salient
words in texts [25] and extracting rules from hidden state changes [34].
In the meantime, visualization is becoming an increasingly important
approach to help machine learning researchers [18, 21, 28, 44, 45]
analyze and diagnose RNNs, and enable domain experts [23] to
understand and evaluate RNNs for application-specific tasks.

In addition to interpretability, another challenging issue with the
deployment of deep sequence models is their steerability [3, 5]. Many
applications will benefit from supporting the domain experts to directly
steer the models with their insights and domain-knowledge. For
example, a doctor with rich experiences in heart diseases would have
valuable knowledge that can benefit a heart failure risk prediction
model [23]. Though end-to-end training of deep neural networks is
an effective learning paradigm which largely alleviates the need to
manually curate data features, it fails to provide the functionality for
expert users to steer the model. A machine learning approach that
is both interpretable and steerable allows the domain experts to gain
insights from the model and in the meanwhile refine the model with
their knowledge, creating a mutually beneficial feedback loop.

In this work, we propose a novel interactive visualization approach
to interpretable and steerable deep sequence modeling. We base our
approach on case-based reasoning [22], which imitates the natural
problem-solving process in people’s everyday lives: by consulting
similar cases in the past we formulate solutions for new situations.
For example, doctors perform diagnostics by recalling similar patients
in the past and mechanics identify solutions to machine malfunctions
by referencing similar cases before. To realize such case-based
reasoning on sequence data, we utilize an inherently interpretable
sequence model named ProSeNet (Prototype Sequence Network) [31].
ProSeNet constructs a small set of prototypical sequences from the
original training data. New inputs are compared with the prototypes
in a latent space for inference (Fig. 2). Based on the interface of
prototypes, it is now possible to enable steerability as the end-users can
directly refine the model by adding, deleting or revising the prototypes.

Involving the end-users in iterative model inspections and refine-
ments brings several benefits: 1) the prototypes constructed by the
optimization algorithm may not align well with the domain knowledge,
engaging domain expertise can help construct more meaningful and
representative prototypes; 2) setting hyperparameters (e.g. number
of prototypes) in the model can be a challenging task and may result
in sub-optimal results, with visual inspection we can identify the
redundancy or insufficiency of prototypes for further refinement.

We therefore design ProtoSteer (Prototype Steering), an interac-
tive visual interface to help domain experts inspect, critique and revise
the prototypes in ProSeNet. The goal is to support the iterative model
refinement for end-users with limited background in machine learning.
The design of the system follows the guidelines for constructing
interactive machine learning (IML) interfaces as described by Amershi
et al. [3, 5], Dudley and Kristensson [11]. In particular, we distill the
following main design requirements:

• Provide explanations of model output and overview of model
behaviour.

• Support model diagnostics by visualizing fine-grained perfor-
mance metrics (e.g. accuracy) to pinpoint the source of errors.

• Reduce user effort in steering the model by leveraging computa-
tional support and presenting informative visual cues.

• Convey the consequences of incremental model updates and pro-
vide undo and redo options.

We consider these generic design requirements as well as the unique
characteristics of ProSeNet to reach the final design of ProtoSteer.
To evaluate the effectiveness of ProtoSteer, we conduct extensive
case studies and expert interviews. The results demonstrate that
user interactions help the system learn more meaningful and concise
prototypical representations of sequence data without sacrificing the
accuracy. The case studies cover applications in two distinct domains:
sentiment analysis on texts and predictive diagnostics of vehicle faults,
which illustrates the general applicability of our approach.

The main contribution of this paper is summarized as follows:

• A human-model interaction scheme which helps refine the learned
knowledge of both the human and the model.

• The design and implementation of a visual analytics system that
allows human-guided refinements of a deep sequence network
through interactively editing a set of prototypical sequences.

• Case studies with real-world datasets and expert interviews which
investigates the effectiveness of direct steerability of deep se-
quence networks via interactive visualizations.

2 RELATED WORK

2.1 Sequential Data Visualization
Sequential data visualization is an increasingly important research
topic due to its wide applicability in many real-world problems
such as clickstream analysis [1, 29], electronic health record (EHR)
analysis [15, 36] and machine/vehicle log analysis [9].

One of the main goals of visualizing such data is identifying salient
sequential patterns. This can be achieved through novel visualization
and interaction designs as proposed in Outflow [49], CareFlow [36] and
DecisionFlow [15] and MatrixWave [51]. Due to the increasing volume
and complexity of sequential data [10], recently researchers also
combine sequence mining techniques (e.g. frequent sequential pattern
mining and event sequence clustering algorithms) with interactive data
visualization to support explorative analysis of large scale sequence
data. Examples of research in this category include FP-Viz [43],
TimeStitch [38], Frequence [37], Peekquence [24] and recent work by
Wang et al. [48], Liu et al. [29], Chen et al. [9] and Guo et al. [16, 17].

Despite the rich literature in sequence visualization, most of the
techniques focus on unsupervised pattern analysis. Our work supports
predictive analysis tasks on sequence data with explicitly defined
labels. The system visualizes task relevant prototypes extracted from
the original training data as both visual summary and explanation of
the model’s inner-workings.

2.2 Deep Sequence Learning and Model Interpretation
Deep sequence models esp. RNNs have achieved impressive
performance and are widely adopted in many application domains
such as audio signal processing, natural language understanding,
and electronic health data analysis [27]. However due to the highly
nonlinear transformations and the massive number of parameters in
those models, they are usually considered as ‘black-boxes’, which are
difficult to comprehend and interact with.

Enable interpretation of the model is usually a first step towards
building IML systems [3, 5, 11]. In recent years quite a few techniques
have been developed for post-hoc explanation of deep sequence models
by visualizing hidden state changes [21,45], calculating the importance
of tokens with regard to the model outputs [2, 8, 33, 34], or mimicking
the behaviour of a complex model with simpler ones through model
distillation techniques [39, 40]. Post-hoc methods shed light into the
decision-making process of the models, however it remains unclear
how adjustments could be made to affect the model behaviour. Deep
sequence models with attention mechanisms are inherently explainable
with the attention weights indicating the importance of each input
token [27]. RetainVis [23] visualizes the attention weights and allows
users to edit them based on their domain knowledge directly.

ProtoSteer is built on a deep sequence model with inherent
interpretability. The model named ProSeNet performs case-based
reasoning with a set of exemplary cases (i.e. prototypes) constructed
from the historical data. The prototypes explain the model behaviour
and enable the end-users to inspect, critique and refine the model based
on their expertise in the domain.

2.3 Interactive Machine Learning (IML)
Interactive machine learning complements computational data mod-
eling with direct feedback from the end users [11]. Through careful
interaction design, users with no or little expertise in machine learning
can apply their domain knowledge to obtain more effective and inter-
pretable models. A few surveys nicely summarize this research field.



Amershi et al. [3, 5], Dudley and Kristensson [11] identify the existing
approaches and the UI design requirements to involve human-in-the-
loop in machine learning systems. VIS4ML [42] formulates an ontolog-
ical framework to understand how current visualization systems support
the various steps in model development. Boukhelifa et al. [7] summa-
rize methods for evaluating interactive machine learning systems.

User interactions in IML come in many different forms. Existing
IML systems allow users to directly specify the predictive rules [6, 47],
provide data sample and/or labels to the system [13], interactively edit
the cost of misclassifications in a confusion matrix [20] or adjust the
weights of different predictors in ensemble models [46]. The design
of the user interface usually has to take several factors into account
including the users’ expertise, the machine learning model and the
properties of the application data [11]. Recently, researchers have also
built systems to support interactive sequence learning. One example
is RetainVis [23], which allows the users to interactively adjust the
attention weights on different tokens in a deep sequence model.

Our work explores a novel approach for interacting with a deep
sequence model: users specify prototypes which are exemplary
sequences and the model performs inferences on new inputs by com-
paring them with the prototypes. The aim is to build an interpretable
model using case-based reasoning [22] with prototypical examples
curated by the experts. The system does the heavy-lifting of learning
appropriate latent representations of the sequences while the users
make observations on the model behavior and revise the prototypes.

3 BACKGROUND

In this section we briefly introduce ProSeNet [31], which combines
deep sequence networks (e.g. LSTMs) with prototype learning to
achieve high predictive accuracy as well as interpretability.

3.1 Interpretable Sequence Learning with ProSeNet
Most of the recent research on deep sequence model interpretation
focus on post-hoc analysis to obtain the sensitivity of the variables or
importance of the individual input tokens [8, 34]. Instead of relying
on post-hoc explanations, ProSeNet achieves built-in interpretability
through prototype learning. In particular, prototype learning mem-
orizes or constructs a small set of exemplary cases (i.e. prototypes)
from historical data and later on refer to those prototypes to perform
classification/regression tasks on new inputs.

As illustrated in Fig. 2, ProSeNet consists of three major compo-
nents: the sequence encoder r, the prototype layer p and the fully
connected layer f with softmax outputs for classification tasks. The
sequence encoder r converts a variable length sequence s into a fixed
length vector representation e = r(s),e ∈ Rm using deep recurrent
neural network encoders (e.g., LSTMs and Bidirectional-LSTMs).
The prototype layer p compares the latent vector representation e
obtained through the encoder network with k prototype vectors pi ∈Rm.
Through appropriate transformations (Appendix B) we obtain a vector
of similarity scores a = p(e),ai ∈ [0,1] where ai is the similarity score
between the input sequence and the prototype pi and ai = 1 indicates
that the input sequence has identical embedding with prototype pi. The
fully connected layer f with softmax output computes the eventual
classification results using the similarity score vector a. We constrain
the entries in the weight matrix in f to be non-negative for better
interpretability. The similarity scores a together with the entries in the
weight matrix can be used to explain the classification results.

The prototype vectors pi ∈ Rm, i ∈ [1,k] learned through back-
propagation are not readily explainable as they may not correspond
to sequences in real-world applications. Therefore the optimization
algorithm performs prototype projection for every few training epochs,
which essentially identifies sequences from the original training
data that are most similar to the prototype vectors in the latent
space. The prototype vectors are then updated with the latent vector
representations of these sequences.

We use an example from sentiment analysis of restaurant reviews
to illustrate how prototypes can be used to explain the classification
results. The model predicts the input sentence as negative and the most
similar prototypes are used to explain the result:

Sequence
Encoder    

... ... ...

... ...

Linear

Softm
ax

Input
Sequence

Prototype
Layer    

Output
Probs

Fig. 2: ProSeNet Architecture. It consists of the sequence encoder layer
r, the prototype layer p, and the fully connected layer f with softmax
outputs for classification tasks.

Input: pizza is good but service is extremely slow
Prediction: Negative
Explanation: 0.69 * good food but worst service (Negative 2.1)

+ 0.30 * service is really slow (Negative 1.1)
The factors in front of the prototype sequences (0.69 and 0.30) are

the similarity scores between the input sequence and the prototypes.
Their associated weights in the fully connected layer f are displayed
at the end of each prototype. The weights can be interpreted as
how confident the prototypes are in determining their neighborhood
instances to have negative sentiments.

3.2 Training ProSeNet with User-specified Prototypes
A few issues still remain for automatically learned prototypes. First, it is
unknown whether the prototypes align well with the domain knowledge.
Second, the identified prototype sequences usually contain redundant
or insignificant events which has little contribution to predictive tasks.
It is difficult to design automatic simplification techniques that can
keep sequential structure that conforms to domain-specific rules (e.g.,
the grammar in language-related tasks).

Therefore, it is beneficial to incorporate the input from domain ex-
perts to search for an optimal set of prototypes. ProSeNet supports
incremental updates of the model with user-specified prototypes. In par-
ticular, the set of prototypes can be edited by adding, deleting, or revis-
ing existing prototypes. Based on the user specification, the incremental
training could adjust the sequence encoder r and the fully connected
layer f while fixing the set of user-specified prototypes. Empirical
experiments show that after retraining it is possible to obtain accuracy
on-par with or even superior compared to the original model. The
detailed incremental training procedure are described in Appendix B.4.

4 DESIGN REQUIREMENTS

The goal of ProtoSteer is to directly incorporate input from the
domain experts in the model instead of relying on machine learning
practitioners as intermediaries for model adjustment. The workflow
therefore is different from the traditional paradigm of machine learning
model development [11] and emphasizes a more rapid iteration
cycle [3]. In this section, we formulate the detailed design requirements
of ProtoSteer by surveying related work in interactive machine
learning (IML). We also periodically collect feedback from automotive
engineers, researchers in natural language processing (NLP), and
machine learning practitioners to iteratively refine the design.

In several recent surveys, researchers have summarized a common
set of user interface components and guidelines for designing IML
systems. Fails and Olsen [13] proposed a model for IML and
highlighted the training, feedback, and correction cycle, which are
friendly for users with limited technical backgrounds. Dudley and
Kristensson [11] analyzed the structural components of IML interfaces
including sample review, feedback assignment, model inspection, and
task overview. Amershi et al. [4, 5] identified design guidelines for
general human-AI interaction through extensive user studies.

We adopt the high-level system structure proposed by Dudley and
Kristensson [11] and design the workflow correspondingly. After the
initial training step, the user first inspects the model by evaluating the



learned prototypes. The user then provides feedback to the model by
adding, modifying or deleting some prototypes. After that, the user com-
mits the updates and the model is fine-tuned with the updated prototypes.
The process went on iteratively until the user is satisfied with the results.

When designing ProtoSteer, we follow the general design
requirements formulated based on the recommendations of the
mentioned studies [5, 11] and instantiate each item by considering the
characteristics of our study.

R1 Provide explanations of model output and overview of model be-
haviour.

R2 Support model diagnostics by visualizing fine-grained performance
metrics (e.g. accuracy) to pinpoint the source of errors.

R3 Reduce user effort in steering the model by leveraging computa-
tional support and presenting informative visual cues.

R4 Convey the consequences of incremental model updates and pro-
vide undo and redo options.

R5 Progressively introduce advanced analysis tools for expert users.

R1: In ProSeNet, the prototypes are the keys to understand the model’s
decision-making process since the prediction results can always be
attributed to the nearest prototypes of the input in the latent space.
Therefore, it is necessary to have a comprehensive understanding of
the prototypes and their roles in the model. In particular, the system
should help users answer the following questions:
Q1 What are the learned prototypes? To what extent do they affect

the model’s decision? Displaying the prototypes is the first step
towards understanding the model behaviour. Each prototype
is associated with a set of weights indicating their relative
importance in determining the outcome. For example, a prototype
may have a strong association with class “positive”. An input that
is very similar to this prototype is more likely to be predicted as
“positive”. Visualizing the weights help identify the most critical
prototypes for a certain outcome as well as the negligible ones.

Q2 Which prototypes are similar to each other? The system should
group similar prototypes to help users identify redundant ones that
can be removed from the model without affecting its performance.

Q3 What are the sequences represented by a prototype? The users
can better assess the representativeness of a prototype by looking
at the sequences closest to it in the latent space defined by the
sequence encoder. If the prototype cannot satisfactorily represent
its nearby sequences the user can specify alternative ones.

R2: Since erroneous results originate from the wrong assignment
of prototypes in ProSeNet, by visualizing the performance metrics
associated with each prototype it becomes possible to pinpoint where
the model fails and which prototype needs to be further refined. Hence
the system should help clarify the following questions:

Q4 How accurate are the prototypes in determining the outcomes of
nearby instances? What are the instances classified incorrectly?

R3: To better engage the users in the iterative model refinement pro-
cess, the system should provide appropriate visual cues and interactive
assistance for revising the prototypes.

Q5 What are the key events in a prototype determining its output?
To better combine users’ domain knowledge with the knowledge
learned by the model it is useful to visually present the importance
of different events. Besides that, a desirable property of a critical
event is that it should consistently have matching events in the
neighborhood of the prototype. Therefore we also visualize such
matching quality information to support prototype editing.

Q6 What are the potential candidates for a new prototype? Creating
new prototypes can be a difficult task without any suggestions
or examples. Therefore it is desirable that the system can provide
recommendations with simple constraints specified by the users.

R4: Finally, in the user-model interaction loop it is necessary to
provide appropriate feedback and visibility of the changes such that
the users can understand what are the impacts of his/her last update.
More concretely, we aim to help users understand the major changes
happening to the model:

Q7 How does the overall performance of the model compare with the
previous version? How do the nearby instances change for each
prototype and how their predictive results change?

R5: Our system also shows hidden state information in the sequence
encoder r as an advanced feature for more experienced users. The users
can be better informed about the models’ internals to perform prototype
editing, especially regarding the two analytic questions Q5 and Q2.
Visualizing hidden state information is commonly seen in many
systems for deep sequence model diagnostics including LSTMVis [45],
ActiVis [19] and Seq2Seq-Vis [44]. In recurrent neural networks,
the change in hidden states usually indicates the occurrences of key
events in the sequence [21, 45]. By visualizing how the hidden states
change for each prototype the experts can identify the most critical
events to keep when simplifying the prototypes (Q5). On the other
hand, if the hidden state distribution of two prototypes, as well as their
neighborhoods are similar it is extremely likely that they can be merged
to a single prototype without affecting model performance (Q2).

5 PROTOSTEER

In this section, we first introduce the overall architecture and the main
components in the visual interface in ProtoSteer. Then we describe the
visual designs and the interactive features in detail. When describing
the features we refer back to the design requirements in Sect. 4 and
show how the system addresses each of them.

5.1 System Architecture
Fig. 3 gives an overview of the system architecture. The system
contains a storage module for data and model, a model manager, an
analytic module, a query module, and a front-end visual interface. The
visual interface contains a rich set of visualizations to support model
inspection and a series of user interactions to support efficient user
feedback to the model. The model manager manages snapshots of the
model and supports fine-tuning, undo, and redo upon requests. The
storage module contains the training, validation and test data to support
incremental model training. The analytic module collects statistical
summaries which could help users better understand the model
behaviour. It also performs comparisons between different snapshots
of the model to track the changes. Through the query module, the users
can search the sequences in the data storage to create new prototypes.

ProSeNet

Model Snapshots

Undo/Redo

Model Manager

Fine-tune

Data Storage

Sequence Index

Visual Interface

?Sequence
Query

Prototype Overview

Comparison

Summary
Statistics

AnalyticsStorage

Sequence Detail View

Prototype Editor

Create Update Delete

Sequence Encoder View

Fig. 3: The ProtoVis system consists of a storage layer, a service layer
(containing the model manager, the analytics module and the sequence
query module), and a visual interface.

5.2 User Interface Overview
As illustrated in Fig. 1, the main component of the visual interface is
the prototype overview (Fig. 1A), which displays all the prototypes
in the model with rich information to help users understand the model
behaviour (Q1, Q2, Q4, Q5). In the prototype overview, we also
visualize the incremental changes after the users edit the prototypes and
update the model (Q7). The sequence detail view (Fig. 1B) displays the
neighborhood instances of selected prototypes as well as the prediction
results (Q3). The sequence query/edit widget (Fig. 5C) is displayed
on demand to help users query the database when creating or editing
prototypes (Q6). The editing history (Fig. 1C) helps users track and



reverse their edits to the model if necessary. The sequence encoder
view (Fig. 1D) displays the hidden state information in the encoder
layer for advanced users to analyze sequence alignment and compare
different prototypes (Q2, Q5).

5.3 Prototype Overview

The prototype overview (Fig. 1A) displays all the prototypes in the
model with necessary information to support detailed inspection of the
model behaviour (Q1, Q2, Q4, Q5). Each prototype is visualized as a
sequence of horizontally arranged rectangular events with event names
displayed as text labels. The border color encodes the type of the event
(different color encoding scheme is used for different application sce-
narios). The sequence detail view (Fig. 1C) displays the neighborhood
instances for user selected prototypes in the prototype overview (Q3).

Visualize prototype weight (Q1). On the “weight” column we
display the relative importance of each prototype in determining the
different possible model outputs. In classification tasks, it shows the
strengths of the association between the prototypes and different class
labels. The values displayed are the corresponding entries in the weight
matrix W of the fully connected layer f . More specifically, Wi j is the
importance of the prototype pi in determining the model output to be
label j (Appendix B). The categorical colors differentiate the labels
in the classification task, similar as in the “prediction” column.

Summarize prediction performance (Q4). For each prototype
we compute all the data instances that are closest to it and we refer
to those instances as the neighborhood of the prototype. We show
a summary of the model decisions on those nearest neighbors as a
stacked horizontal bar displayed on the “prediction” column (Fig. 4C).
The width of the bar represents the total number of neighborhood
instances. The categorical color indicates the decisions made by the
model in the classification task. We use solid blocks to indicate correct
classification results and patterned blocks to indicate errors. The
width of each colored block represents the number of instances that
are correctly / incorrectly classified to the corresponding label. The
visual encoding helps users quickly identify important prototypes that
represent a large number of instances as well as prototypes which are
usually associated with inaccurate prediction results.

Reorder the list (Q2, Q4). The list of prototypes can be sorted
based on several different criteria to address a variety of analytic tasks.
By default, the system sorts the prototypes based on their similarity.
It performs a hierarchical clustering of the prototypes based on their
distances in the latent space and obtains a linear order accordingly,
similar as in [12]. Sorting based on similarity groups prototypes that
resemble each other and it is therefore easier to spot redundancy (Q2).
The user can also sort the prototypes by the accuracy of the prediction
results. The most problematic ones can be brought to attention for
further analysis (Q4).

Filter the prototypes. The number of visible prototypes can be
reduced by filtering in two different ways: 1) the user specifies a
few events and the list will only display prototypes containing one
of the events 2) the user selects a prototype and the list will display
the top-k prototypes most similar to it in the latent space. Filtering
by event helps users narrow down the search if there are interested in
a particular one. Filtering by similarity help users identify potential
duplicates (Q2). In our implementation, we set k to 10.

Visualize event importance (Q5). We display the importance of
the event as a horizontal bar at the bottom of the rectangle (Fig. 4C).
The length is proportional to an importance score to help highlight the
most critical events. The importance of each event e in a prototype
p is calculated with a leave-one-out strategy. More concretely, the
algorithm performs the following steps for each e:

1. Remove e from prototype p to obtain a new sequence p′.
2. Compute the distance between the original prototype p and p′ in

the latent space defined by the sequence encoder r.
3. Convert the distance to a normalized value between 0 and 1, where

0 indicates that removing e has no effect on the latent representation
of p. The normalized value is the importance of e.

The intuition is that the more important an event e is, the farther
the prototype will be pushed away from its original position in the
latent space when removing e. As shown in Fig. 1A, the long bars
below “great“ and “horrible“ indicate that they are highly important
in prototype #43. We also display how well each of the event in
a prototype aligns with those in the neighborhood sequences. We
compute the alignment score as described in Appendix A and use the
height of the rectangle to encode the score, as illustrated in Fig. 4C.

5.4 Visualize Model Difference
Users can understand and analyze the changes after updating the
prototypes in the prototype overview via comparison mode (Q7).

Similar as in some popular code or document version comparison
tools, the system highlights the prototypes with different colors
to indicate different types of edits in the prototype overview. The
added, deleted and edited prototypes are marked with , , and
respectively. The visual cues help users keep track of the changes.
After users commit the edits, the model is fine-tuned with the updated
prototypes. How can we visualize the changes in the model after it
is fine-tuned? Directly comparing the model parameters may not be
helpful since they can be extremely difficult to interpret. Because
in ProSeNet, the model’s decisions are made based on the inputs’
proximity to the prototypes, we decide to visualize the changing
neighborhoods of each prototype to summarize the difference in the
model before and after the update.

Given that the prototypes are actually prototypical cases defined by
their neighborhood, it is useful to verify the neighborhood changes
after fine-tuning. Users can click on the compare button on a historical
interaction record in the editing graph to activate the comparison mode.
The diff-view is then displayed on the right of the prototype overview
to show the number of instances that flow-in and flow-out from the
neighborhood of each prototype as two horizontally-stacked bar-charts
(Fig. 4C). The bar on the right indicates the data instances flowing out
from the neighborhood of a prototype and the bar on the left indicate the
data instances flowing in. The lengths of the bars are proportional to the
corresponding number of instances. The colored blocks indicate clas-
sification results given by the updated model. As the user hovers over a
prototype or a bar (Fig. 4), the visualization displays curved edges con-
necting the origins and destinations of the incoming and outgoing flows.

Before finalizing to the current design, we have considered several al-
ternative designs. Our first attempt is Sankey diagram (Fig. 4A), which
intuitively displays the flow-in and flow-out of the data instances. How-
ever, it requires twice the screen space to display the prototypes on both
sides of the chart. Another possible approach is using a matrix visualiza-
tion (Fig. 4B) where the rows and columns represent prototypes of two
model snapshots, and the entries in the matrix encode the volume of the
flow. However it can be space-inefficient as the incremental changes are
usually encoded as a sparse matrix. During the design process, the users
criticized that it is difficult to associate the values in the matrix with the
prototypes, and they often need to go back and forth between the matrix
and the prototype sequences. Our design in comparison organizes the in-
formation in two levels: the aggregated volume of flows are displayed as
bar-charts and the details of the flow direction are displayed on-demand.

5.5 Editing History
The system visualizes the history of the model edits with as a falling list
(an example is shown in Fig. 6A). Each node in the list represents a snap-
shot of the model. The nodes can be revisited and edited again to create
alternative branches. Each node shows a summary of the edits indicat-
ing how many prototypes have been added (+), deleted (-) or edited (E)
in each snapshot. The editing history provides traceability in the system.

5.6 Sequence Encoder View
The system also visualizes the hidden state changes in the sequence
encoder r (Fig. 1D), similar as in Seq2Seq [44]. The goal is to help
more experienced users inspect the model’s internals and edit the
prototypes based on insights gained from the hidden state visualization.

The design is centered around the visual representation of prototypes,
similar as in the other views. More specifically, it visualizes the



alignment

pecial but it was good food .

stuff in the bowl of pho .

n't very much <OTHER> there though .

was looking forward to eating there .

wifi . bathrooms are usually dirty .

had . definitely would not return .

they are pissed when customers walk in

still passable for a vegas joint

fused to put gin in it .

dirty

0

10

16

17

18

26

1

12

17

26

0
18

22

25

12

15

19

23

Deleted UpdatedAdded

Flow In Flow Out

Predictions

importance

Prototypes Neighborhood Change

Negative Positive

A

B C

Fig. 4: Alternative designs for visualizing model differences. A:
Sankey-like data flow. B: Difference matrix. C: Our current design of
aggregated bar-charts with detail-on-demand data flow.

hidden state changes of the prototypes when they pass through the
sequence encoder. Since the hidden states are high dimensional vectors,
dimension reduction technique is used to project them onto a 2D plane.
The projected hidden states of a prototype are connected to form a
trajectory. The trajectories help users identify significant changes
in the hidden state vector, which usually indicate the occurrences of
key events or substructures in a sequence [21] (Q5). For example,
in Fig. 1D, the word “horrible” pushes the hidden state towards left
significantly, indicating that it is a critical word in the sentence.

To visualize the distribution of the prototypes’ neighbors we also
project their hidden states on the same 2D plane (R5). However,
projecting such a large amount of data (hidden states of thousands of
sequences× tens of events) would slow down the system (especially for
algorithms like t-SNE [30]). Thus, we employ a parametric nonlinear
projection technique called kernel t-SNE [14]. The method trains a
parametric projection function with a subset of the data (the hidden
states of prototype sequences in our implementation). The remaining
points are then projected on demand without further optimization using
the learned function, which can be completed in linear time.

We design a projection visualization which combines the trajectories
of the prototypes and the contour maps which summarize the hidden
state distribution of their neighborhoods. This visualization helps
identify redundant prototypes whose neighborhood contour maps may
have significant overlap with each other (Q2). We observe that some
projected points are too close on the trajectory and the labels may
overlap with each other. We therefore group the points based on their
proximity and their labels are displayed collectively near the cluster.

5.7 User Interactions
The system supports a rich set of user interactions to help people
refine the model by adding, deleting and revising the prototypes. We
have already discussed some of them when introducing the visual
components in the system. In this section, we introduce the rest of them.

Direct drag-and-drop. Many of the operations in the system can
be completed through direct drag-and-drop. For example, the user
can drag-and-drop prototypes to the recycle bin to remove them, to
the sequence detail view to inspect the neighborhood instances and
to the projection view to analyze the hidden state distributions. The
interaction design utilizes a physical metaphor and the users can
perform a variety of tasks easily through direct manipulation.

Sequence editor. The system provides a sequence editor (Fig. 5C2).
The user can directly add and remove events in an existing prototype
without retyping the events in a new form.

Sequence query (Q6). We provide a search interface to help users

create new prototypes with the support from available data. In particu-
lar, the user can input a subsequence or phrase q they would like to see
in the new prototype. Then, the system will use q to search matched
sequences in the database. The system supports two matching schemes:
exact and soft matching, which can be used together or separately. In
exact matching, each sequence s is scored by len(LCS(s,q))/len(q),
where LCS(·, ·) computes the longest common subsequence between
two inputs. For soft matching, the system first indexes the frequent
n-grams in the training sequences with their latent representations
encoded by the sequence encoder r. The system searches the n-grams
with the closest latent representations to the query q’s and returns the
sequences containing those n-grams. This allows the users to discover
semantically related sequences. An example is displayed in Fig. 5C1.

6 EVALUATION

In this section, we describe the example usage scenarios and demon-
strate how ProtoSteer could be used to steer ProSeNet with user inputs.

6.1 Yelp Review Texts

In this use case, an NLP expert aimed to learn how people typically
express their sentiments online. He wanted to build a compact and
interpretable representation of the Yelp Reviews [50] with ProSeNet .
The dataset contains six million reviews with sentiment labels. Each
review is tokenized into a sequence of words. For experimental
purpose, the expert created a smaller binary-labeled dataset containing
106 thousand short reviews with less than 25 words. The dataset is
further partitioned into 60% training, 20% validation and 20% test set.

However, the expert found it difficult to pick the number of
prototypes k that can balance the performance and interpretability at
the same time. That is, a larger k tends to yield prototypes with finer-
grained semantics and higher accuracy, but the generated prototypes
tend to contain more similar and redundant patterns. Thus, the expert
started by setting a relatively large k (=70) and trained a ProSeNet with
a two-layer bi-directional LSTM encoder. Then he used ProtoSteer to
evaluate and condense the model by interactively editing the prototypes.
To enrich the sequence visualization, the words are colored based on
the frequency of their concurrence with the sentiment labels.

Understand prototypes. At the beginning, the expert scanned
through the prototype list (Fig. 1A) to see what the prototypes are (Q1).
With the default similarity-based ordering generated by hierarchical
clustering (Q2), the expert first noticed a salient clustering of negative
and positive outputs along the prediction column. The clustering
implies that the model has learned a good measure of sentiment
proximity for textual sequences. He proceeded to read a few prototypes,
and found that most of the highlighted words in the prototypes are
common sentiment indicators including “best”, “awesome”, “great”,
“horrible”, “worst” and the exclamation mark “!”. He then randomly
inspected a few prototypes by dragging them into the detail view. The
sequence detail view (Fig. 1B1) shows that the prototype #61 and most
of its neighbors starts with a few compliments similar to “great food”
and “great service”, and ends with “!” (Q3). He also found that some
prototypes only have very small weight and some prototypes are very
similar. Next, the expert tried to reduce the number and complexity
of the prototypes to obtain a simpler and more interpretable model.

Eliminate insignificant prototypes. The expert first focused on
eliminating insignificant prototypes. He sorted the prototypes by the
number of closest instances (the prediction column) and identified
three non-significant prototypes with very few closest instances (e.g.,
prototypes #43 and #64 in Fig. 1A). Then he quickly inspected them
one-by-one via the detail view to see their neighbors (Q3). All three pro-
totypes do not share a similar pattern with its neighbors. The detail view
of prototype #43 is shown in Fig. 1B2 as an example. The discordance
between these prototypes and their neighboring sequences suggests they
are not good representatives of the data. Due to the insignificance and
poor representativeness of these prototypes, the expert removed them
from the model by dragging them to the recycle bin resided at the top-
left corner of the overview. After that, the expert looks at the weights
column and further identifies four prototypes with small weight values,



Overview L

our favorite restaurant near home ! great food excellent service and awesome wine selection and beer as well .34

Overview L

a huge company like this goes cheap on their wifi unable to <OTHER> any <OTHER> bathrooms are usually dirty .56

ate here and the hygiene level <OTHER> zero . found stuff in the bowl of pho .0

Projection Brush

#34

Overview - [Compare Mode] L

staff awesome music and delicious food . i 'll definitely be going back !

our favorite restaurant ! excellent service and awesome beer .34

and ambience . love this place . i highly recommend this wonderful place .

meal at a very reasonable price ! friendly staff and a great environment !

closed ! with all the great reviews i was looking forward to eating there .46

ate here and the hygiene level <OTHER> zero . found stuff in the bowl of pho .0

a huge company like this goes cheap on their wifi . bathrooms are usually dirty .56

Overview - [Compare Mode] L

create

Encoder View Brush

#56 #0

A

B

A1

A2

B1

B2

Negative Positive

favorite restuarant near home

service and awesome wine collection and beer

C2

C1

Update

Update

Fig. 5: Steering ProSeNet trained on Yelp Review. A: Evaluate the similarity between two prototypes #0 and #56 via sequence encoder view
(A1), and reduce the duplicity of them (A2). B: Reduce the verboseness of a prototype by removing unimportant events and subsequences with
little state change (B1). C1: Search prototype candidates with key phrases “good food” (exact match) and “bad service” (soft match), and C2: edit
the sequence for cleaner semantics and submit the create operation.

Overview R

Prototypes Weight Prediction

P006f P000042

P0007 P0007171

P006d P006d135

P2XXX127

P006f P0038 B1040 P206c P003c B1040 P206c0

P0015 U103a P000e P2002 U1023 P1055 P103b155

127

Detail

P2XXX127

P2XXX

P2XXX

P2XXX

P2XXX

P2XXX

P2XXX127

P2031 P2XXY P2XXX83

P2XXY4

P2031 P2XXX P006d80

P0029 P2XXX25

83

Prototypes Weight Prediction

83

P006d

P0007

P2XXY

P2AFR

P2INT

P0PRS

P2XXX

History

200 prototypes

-19 E1

181 prototypes

-10

171 prototypes

E1

171 prototypes

E4

171 prototypes

-5 E2

166 prototypes

-3

163 prototypes

-1

162 prototypes

-3

159 prototypes

-1 E2

158 prototypes

Low engine pressure

A B

D

C

Abnormal air/fuel rate

Abnormal intake pressure

Engine pressure control

Low engine pressure (2)

Gas recirculation

Engine pressure control (2)

Filter

Fig. 6: Pruning and analyzing vehicle fault sequences. A: The interaction history. B: The prototype list sorted by the number of closest instances.
Solid fill encodes true positive, and pattern fill indicates false negative. Prototypes #171 and #135 present recurring faults of P0007 and P006d.
Prototype #127 indicates an unexpected predicted risk from a single P2XXX fault. C: The neighbor instances of #127 in the validation set. D:
Filtering prototypes by faults P2XXX and P2XXY.



which is also a sign of insignificance. He performed a similar analy-
sis procedure and removed three of them. Finally, the expert clicked
the submit button to upload the delete operations. The model is then
fine-tuned and the updated performance on test set remains at 94.8%.

Reduce redundancy. Prototypes with similar semantic patterns
are undesirable since they bring extra complexity that adds little
information to the model or explanation. However, since semantic
similarity is often a subjective measure, it is difficult to detect and
reduce such redundancy automatically. After sorting the prototypes
by similarity (under the model’s criteria), the expert quickly discovered
a few pairs of prototypes with high similarity scores. He used the
sequence encoder view (Fig. 5A1) to compare the sequential similarity
of prototype #0 and #56 and discovered that their neighborhood
hidden states’ distributions are almost identical (R5), which indicates
a possible redundancy. After further investigation (Fig. 5A), the expert
summarized that both prototypes first complain about the restaurant,
and then criticize the dirty environment/food. The expert decided to
merge the two prototypes. Thus, he removed prototype #0 and edited
#56 to emphasize the “dirty” part. After fine-tuning the model for
two epochs, the expert verified the change of nearby instances via the
model-diff view (Q7). As shown in Fig. 5A2, the major flow of data
from #0 to #56 implies the “merge” of two prototypes is successful.

Improve prototype conciseness. Another issue that the expert
discovered is that a lot of prototypes contain wordy phrases that
contribute little to the sentiments. The expert wished to simplify each
individual prototype to contain only sentimentally significant phrases.
Although automatic simplification of the prototypes is feasible, it
often produces incomplete sequences that are difficult to read. Via the
prototype overview, the expert iteratively selected candidate prototypes
that are long and contain possibly insignificant subsequences (the
words with short importance bar in the bottom, Q5). He then inspected
each of the projected prototype in the sequence encoder view. Take
prototype #34 (Fig. 5B1) as an example, he noticed that the words
“favorite restaurant near home” are projected very close to each other.
The expert recognize that these words only have a small effect on
the hidden state (R5). The same situation applies to “service and
awesome wine collection and beer”. Based on these findings, the
expert simplified the prototype sequence of 19 words to “our favorite
restaurant ! excellent service and awesome beer .” which only contains
10 words (including punctuation). After the edits, he also used the
compare view (Fig. 5B2) to examine the change of its neighboring
instances, and discovered that there is little outflow of data from #34.

Create new prototypes. After sorting the prototypes by accuracy,
the expert found that some of the prototypes have a relatively high error
rate (Q4). He focused on the prototype with the highest error rate, #44,
and observed that a large portion of the prediction bar is filled with blue
striped pattern, indicating a number of instances are wrongly classified
as positive. The expert dragged the prototype into the detail view for
further analysis. From the detail view, he learned that most wrongly
classified neighbor sequences contain a mixture of positive and strong
negative sentiment, which is not clearly represented by the prototype
#44 itself. Thus, the expert wished to add a new prototype that reflects
the sentiment transition. He clicked the “add” button to open the
prototype creator (Fig. 5C1), and queried candidate prototypes (Q6)
with two phrases “great food” (exact match) and “bad service” (soft
match). He selected the third returned sequence, removed some verbose
part of the sequence, and clicked “submit” to create a new prototype.

After a few iterations of model updates, the expert performed 26
delete, 2 create and 20 edit operations. The number of prototypes de-
creases from 70 to 46 and the average length of the prototypes decreased
from 18.2 to 14.9. Even though the number and the complexity of proto-
types were largely reduced, the performance of the model remains sim-
ilar (94.8% to 94.9%). In addition, through the interaction with the pro-
totypes, the expert also increased his knowledge about the review data.

6.2 Vehicle Fault Logs
In this usage scenario, an expert in the automotive industry is trying to
build a sequence model on vehicle fault logs to predict the future risk
of certain faults in each vehicle. With an understanding of the future

risks, the mechanics can perform a precautionary examination on the
vehicles, which would improve the quality of the maintenance services
and lead to higher customer satisfaction.

The dataset contains fault logs of 12,000 vehicles collected during
their visit to the repair workshops. Each fault is encoded with a standard
five-digit diagnostic trouble code (DTC). A total of 393 different DTCs
are used to build a prediction model for the risk of the most frequent
92 DTCs. The expert suggests to group the faults that happen within
14 days as a diagnostics session since most vehicles complete their
diagnostics procedure in a workshop within 2 weeks. A special <SEG>
code is inserted between every two consecutive sessions of DTCs to
construct the input sequence. We formulate the risk prediction problem
as a multi-label classification task and use the DTCs at the last session
as the labels. A ProSeNet with a single-layer Bi-LSTM encoder and
200 prototypes were trained on 60% of the dataset and the recall@5
(the top-five recall rate) 1 on test set is 47.7%. The expert then uses
ProtoSteer to analyze the learned prototypes. ProtoSteer provides a
color selector to customize the color encoding of events, such that the
interface can handle a relatively larger number of events.

Explore prototypical fault sequences. The expert first uses a
qualitative color scheme to encode the eight most frequent events and
sorted the prototypes by similarity. Going through the list of prototypes
(Q1), she found that the prediction summary often shares similar colors
with some of the events in the input sequence (Fig. 6B). This indicates
that these prototypes present recurring patterns where the same set of
DTCs appear when the vehicle visits the workshop again. The expert
stated that the recurrent DTCs could be faults that are difficult to
resolve or insignificant ones that are ignored by the mechanics. Further
investigation would be required to differentiate the cause.

Edit Prototypes. With the similarity-based sorting, the expert
easily identified some very similar or even duplicate prototypes (Q2).
The expert quickly went through them and removed 12 redundant
prototypes and 7 similar prototypes. After that, she sorted the
prototypes according to the number of closest instances, and further
condensed the prototype list by removing 10 insignificant prototypes.
After fine-tuning, the expert proceeded to simplify another 8 prototypes
iteratively by dropping unimportant events in the prototype (Q5). The
interaction history is shown in Fig. 6A.

Analyze unexpected risks. Next, the expert sorted the prototypes
by the number of closest instances to identify the most representative
prototypes. After a quick scan, she noticed that the fourth-ranked
prototype #127 shows an interesting unexpected sequential relation:
there is a high-risk of three different faults after a vehicle experiences
fault P2XXX (related to powertrain control). This code indicates the
engine pressure sensor detects a low input signal. It is considered to
be urgent and indicates conditions that could possibly lead to engine
or fuel system damage. Interested in what the code would cause, the
expert assigned different colors for the three DTCs: P0PRS (engine
pressure control), P2INT (intake sensor), and P2AFR (air/fuel ratio).
For detail investigation, the expert then dragged the prototype into
the detail view, where more than half of the neighboring sequences
developed these faults after P2XXX.

Formulate hypothesis. Although they look unrelated at the first
glance, the expert further examined these DTCs and found that they
all originate from the same subsystem in the powertrain related to air
pressure control: P2AFR indicates that the air/fuel ratio in the engine is
so abnormal that the powertrain control module (PCM) fails to correct
it. P2INT is related to P2AFR because intake sensor is used to help PCM
to control the amount of air being allowed to the engine. P0PRS usually
represents that the pressure captured by the sensor does not meet
the expected value. Based on these follow-up diagnoses, the expert
further suggested that a low engine pressure (P2XXX) is possibly an
early sign of these problems but is not properly addressed in previous
maintenance sessions. The expert also stated that, though there is
indeed a temporal order, P2XXX may not necessarily be a cause of these
faults but possibly a correlated signal. A human expert is crucial when

1See https://ils.unc.edu/courses/2013_spring/inls509_001/

lectures/10-EvaluationMetrics.pdf

https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf
https://ils.unc.edu/courses/2013_spring/inls509_001/lectures/10-EvaluationMetrics.pdf


evaluating these patterns to “identify whether this is a causation or
correlation”. Since in the model the prediction results can be explained
through a combination of prototypes it is possible for the domain
experts to separate the effect of correlation and causation more easily.

Analyze correlated faults. To gain further understanding of the
trouble code P2XXX, the expert used the filter function in the overview
to filter the prototypes to only four that contains P2XXX. She noticed
that P2XXY, a similar code to P2XXX occurs together with P2XXX
in prototype #83. Prototype #83 has similar prediction results and
weights to #127 (Fig. 6D). The expert added P2XXY to the filter and
discovered that prototype #4 (with only P2XXY) also share similar
predicted risks. This suggests that P2XXX and P2XXY are more or less
equivalent in the system and can potentially be grouped for analysis.

6.3 Expert Interview

We collected feedback from the individual interviews with three NLP re-
searchers and two experts in automotive diagnostics. Two NLP research
scientists have ten years’ experience in NLP research, and one has five
years’ experience. The two automotive experts have been developing
automotive diagnostics solutions for five years. We first introduced
the ProtoSteer interface by walking through simplified versions of the
use cases (only the necessary parts to cover the provided functions).
Then we asked them to try out the tools by viewing and criticizing the
displayed prototype sequences. They were allowed to freely update
the prototypes using the interface and commit for fine-tuning. After 30
minutes trial sessions, we collected their suggestions, usage experience,
as well as how they will use the tool in their daily work.

Interpretability and Interactivity. The experts showed strong in-
terest in combining interpretability and interactivity. One NLP re-
searcher described that, the most straightforward and also interpretable
approach for sentiment analysis uses sentiment dictionaries, which
consist of words or phrases with sentiment labels. However, such dic-
tionaries often take a long time to build. “Your tool has the potential
to help build the dictionaries interactively by looking at the prototypes
and verify them”, and this is indeed one goal of designing the system:
to enrich both the knowledge of the model and humans. The automotive
engineers applauded the idea of working with interpretable prototypes:

“it’s much easier to explore and check (the results) than the black boxes”.
They also mentioned that in most cases the diagnostics solutions have
to be manually verified and curated before being released to the market.

Domain adaption. Though our goal is to build a generic solution
for sequence prediction tasks, we noticed that the experts demonstrated
domain-specific suggestions on additional features. The automotive
engineers suggested to further integrate static features of the vehicles
such as engine types and electronic control unit (ECU) versions in the
model. They also demanded for new visualizations to help pinpoint
the source of the faults on a vehicle on a system diagram. The NLP
researchers asked for additional visual encoding for grammar structures
such as part-of-speech or parse trees to help with the prototype updates.

Fine-tuning speed and performance. One NLP researchers said
that “the waiting time (for fine-tuning) is a bit long”. The other two
also agreed with this point after we asked them. They also commented
that “this is as expected given the complexity of neural networks”,
and “smarter (fine-tuning) strategy is indeed an interesting direction”.
Another interesting discussion among the experts is the trade-off of the
performance and model simplicity. We noticed that massive updates
performed by the experts were delete operations, which reduce the
number of prototypes.

Improvements. Experts from both domains agreed that the visual
representation of the prototypes is very straightforward and easy to
understand. However, two experts commented that it took a while to
fully grasp the “weight” column and the sequence encoder view. One
expert suggested that showing an animation from a sequence to its 2d
projection could help better explain the relation between the prototypes
and the projected sequences for the novice users. Another expert also
suggested that it would be beneficial to include detailed explanations
of the prediction on individual instances, i.e. how the model combines
the prototypes to make the final decision.

7 LIMITATIONS AND FUTURE WORK

Our system as demonstrated has been successfully applied to two real-
world datasets with promising results. However, there are still many
limitations and we do see quite a few promising research directions:

Scalability to large training dataset. Currently fine-tuning the
ProSeNet takes 48 seconds on average for the yelp review dataset
(37k sequences with average length of 22) and 4 seconds on average
for the vehicle fault logs dataset (7k sequence with average length of
6) on a PC with the same setting. The speed is acceptable for relatively
small scale datasets. However, for a larger amount of training data or
larger models, the users may need to wait for several minutes and even
hours before the model is updated. It requires further research efforts
for smarter and more efficient fine-tuning algorithms that addresses the
need for real-time interactions. However, one potential workaround is
to speed up the algorithm with distributed training, which may require
substantial investment in hardware. Another potential approach is to
progressively update intermediate training results such that they can
observe how the model is adapting with the new prototypes. Strategies
like optimistic visualization [32] could also be adopted to provide
smoother user experience.

Long-term user study. To fully understand the limitations and
the benefits of the system it would be helpful to track the usage of
the system through a long-term use study, ideally in a setting with
continuously streaming data such that the model needs to be frequently
updated to cope with the drift in data distribution.

Termination criteria. The IML loop eventually should come
to a stop and a termination criteria is needed. The loop could end
when the users believe that the model has reached the right balance
between interpretability and predictive performance or there will only
be marginal gain when they further interact with the model. However
concrete definition of such criteria can be challenging and it is usually
application dependent.

Application domains. It could be imagined that a variety of
application domains could benefit from the approach presented in
this paper. For example, the system can be used to build explainable
models for disease risk prediction using EHR data. The doctors can
use the system to interactively build a set of prototypes and the model
can use these as a reference for prediction. These exemplary cases can
also be used as training materials.

8 CONCLUSION

We introduce a novel human-model interaction framework, ProtoSteer,
which directly involves domain experts in steering a deep sequence
model without relying on machine learning practitioners as inter-
mediaries. The framework is built on prototype-based reasoning
and employs a deep sequence model named ProSeNet which is
inherently interpretable. The domain experts can steer the model by
directly adding, deleting, or revising the prototypes. An incremental
training scheme allows the model to adapt to user specifications
while maintaining similar performance. We propose novel interaction
and visualization designs to help users inspect, critique and edit the
prototypes. Case studies on two real-world application scenarios
including sentiment analysis on customer reviews and predictive
diagnostics of vehicle faults demonstrate that our approach is able
to help the domain experts obtain more interpretable models without
sacrificing the predictive performance. We believe that the principles of
the proposed approach can be applied to enable steerability for a variety
of deep neural network architectures and will open up a wide range of
research possibilities in interpretable and steerable machine learning.

ACKNOWLEDGMENTS

This research was partially supported by Hong Kong TRS grant T41-
709/17N.



REFERENCES

[1] Google analytics. https://analytics.google.com/.
[2] D. Alikaniotis, H. Yannakoudakis, and M. Rei. Automatic text scoring

using neural networks. Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics, pp. 715–725, 2016.

[3] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza. Power to the
people: The role of humans in interactive machine learning. AI Magazine,
35(4):105–120, 2014.

[4] S. Amershi, J. Fogarty, A. Kapoor, and D. Tan. Effective end-user interac-
tion with machine learning. In Twenty-Fifth AAAI Conference on Artificial
Intelligence, 2011.

[5] S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson,
J. Suh, S. Iqbal, P. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, and
E. Horvitz. Guidelines for human-ai interaction. ACM, May 2019.

[6] M. Ankerst, C. Elsen, M. Ester, and H.-P. Kriegel. Visual classification: an
interactive approach to decision tree construction. In Proceedings of the
Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, vol. 99 of KDD ’99, pp. 392–396. ACM, 1999.

[7] N. Boukhelifa, A. Bezerianos, and E. Lutton. Evaluation of interactive
machine learning systems. In Human and Machine Learning, pp. 341–360.
Springer, 2018.

[8] D. Cashman, G. Patterson, A. Mosca, N. Watts, S. Robinson, and R. Chang.
Rnnbow: Visualizing learning via backpropagation gradients in rnns. IEEE
Computer Graphics and Applications, 38(6):39–50, Nov 2018. doi: 10.
1109/MCG.2018.2878902

[9] Y. Chen, P. Xu, and L. Ren. Sequence synopsis: Optimize visual summary
of temporal event data. IEEE transactions on visualization and computer
graphics, 24(1):45–55, 2018.

[10] F. Du, B. Shneiderman, C. Plaisant, S. Malik, and A. Perer. Coping with
volume and variety in temporal event sequences: Strategies for sharpening
analytic focus. IEEE transactions on visualization and computer graphics,
23(6):1636–1649, 2017.

[11] J. J. Dudley and P. O. Kristensson. A review of user interface design for
interactive machine learning. ACM Transactions on Interactive Intelligent
Systems (TiiS), 8(2):8, 2018.

[12] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster
analysis and display of genome-wide expression patterns. Proceedings of
the National Academy of Sciences, 95(25):14863–14868, 1998.

[13] J. A. Fails and D. R. Olsen, Jr. Interactive machine learning. In Proceed-
ings of the 8th International Conference on Intelligent User Interfaces, IUI
’03, pp. 39–45. ACM, New York, NY, USA, 2003. doi: 10.1145/604045.
604056

[14] A. Gisbrecht, A. Schulz, and B. Hammer. Parametric nonlinear dimension-
ality reduction using kernel t-sne. Neurocomputing, 147:71 – 82, 2015.
Advances in Self-Organizing Maps Subtitle of the special issue: Selected
Papers from the Workshop on Self-Organizing Maps 2012 (WSOM 2012).
doi: 10.1016/j.neucom.2013.11.045

[15] D. Gotz and H. Stavropoulos. Decisionflow: Visual analytics for high-
dimensional temporal event sequence data. IEEE transactions on visual-
ization and computer graphics, 20(12):1783–1792, 2014.

[16] S. Guo, Z. Jin, D. Gotz, F. Du, H. Zha, and N. Cao. Visual progression
analysis of event sequence data. IEEE transactions on visualization and
computer graphics, 25(1):417–426, 2019.

[17] S. Guo, K. Xu, R. Zhao, D. Gotz, H. Zha, and N. Cao. Eventthread:
Visual summarization and stage analysis of event sequence data. IEEE
transactions on visualization and computer graphics, 24(1):56–65, 2018.

[18] F. M. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics
in deep learning: An interrogative survey for the next frontiers. IEEE
transactions on visualization and computer graphics, 2018.

[19] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau. Activis: Visual ex-
ploration of industry-scale deep neural network models. IEEE transactions
on visualization and computer graphics, 24(1):88–97, 2018.

[20] A. Kapoor, B. Lee, D. Tan, and E. Horvitz. Interactive optimization for
steering machine classification. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1343–1352. ACM, 2010.

[21] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078, 2015.

[22] J. L. Kolodner. An introduction to case-based reasoning. Artificial Intelli-
gence Review, 6(1):3–34, 1992.

[23] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun,
and J. Choo. Retainvis: Visual analytics with interpretable and interactive
recurrent neural networks on electronic medical records. IEEE transac-

tions on visualization and computer graphics, 25(1):299–309, 2019.
[24] B. C. Kwon, J. Verma, and A. Perer. Peekquence: Visual analytics for

event sequence data. In ACM SIGKDD 2016 Workshop on Interactive
Data Exploration and Analytics, 2016.

[25] J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and understanding
neural models in NLP. In Proc. NAACL: HLT, pp. 681–691. Association
for Computational Linguistics, 2016.

[26] O. Li, H. Liu, C. Chen, and C. Rudin. Deep learning for case-based rea-
soning through prototypes: A neural network that explains its predictions.
In AAAI Conference on Artificial Intelligence, 2018.

[27] Z. C. Lipton, J. Berkowitz, and C. Elkan. A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019,
2015.

[28] S. Liu, Z. Li, T. Li, V. Srikumar, V. Pascucci, and P.-T. Bremer. Nlize: A
perturbation-driven visual interrogation tool for analyzing and interpreting
natural language inference models. IEEE transactions on visualization
and computer graphics, 25(1):651–660, 2019.

[29] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wil-
son. Patterns and sequences: Interactive exploration of clickstreams to
understand common visitor paths. IEEE Transactions on Visualization
and Computer Graphics, 23(1):321–330, 2017.

[30] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[31] Y. Ming, P. Xu, H. Qu, and L. Ren. Interpretable and steerable sequence
learning via prototypes. In Proceedings of the 25th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’19, 2019.

[32] D. Moritz, D. Fisher, B. Ding, and C. Wang. Trust, but verify: Opti-
mistic visualizations of approximate queries for exploring big data. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, pp. 2904–2915. ACM, New York, NY, USA, 2017. doi:
10.1145/3025453.3025456

[33] W. J. Murdoch, P. J. Liu, and B. Yu. Beyond word importance: Contextual
decomposition to extract interactions from LSTMs. In International
Conference on Learning Representations, 2018.

[34] W. J. Murdoch and A. Szlam. Automatic rule extraction from long short
term memory networks. 2017.

[35] Parliament and C. of the European Union. The general data protection
regulation. 2016.

[36] A. Perer and D. Gotz. Data-driven exploration of care plans for patients.
In CHI’13 Extended Abstracts on Human Factors in Computing Systems,
pp. 439–444. ACM, 2013.

[37] A. Perer and F. Wang. Frequence: interactive mining and visualization
of temporal frequent event sequences. In Proceedings of the 19th inter-
national conference on Intelligent User Interfaces, pp. 153–162. ACM,
2014.

[38] P. J. Polack, S.-T. Chen, M. Kahng, M. Sharmin, and D. H. Chau. Ti-
mestitch: Interactive multi-focus cohort discovery and comparison. In
Visual Analytics Science and Technology (VAST), 2015 IEEE Conference
on, pp. 209–210. IEEE, 2015.

[39] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1135–1144. ACM, 2016.

[40] M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors: High-precision model-
agnostic explanations. In AAAI Conference on Artificial Intelligence,
2018.

[41] E. Rich and K. Knight. Artificial intelligence. Tata McGraw-Hill, 1991.
[42] D. Sacha, M. Kraus, D. A. Keim, and M. Chen. Vis4ml: An ontology

for visual analytics assisted machine learning. IEEE transactions on
visualization and computer graphics, 25(1):385–395, 2019.

[43] J. Stasko and E. Zhang. Focus+ context display and navigation techniques
for enhancing radial, space-filling hierarchy visualizations. In Information
Visualization, 2000. InfoVis 2000. IEEE Symposium on, pp. 57–65. IEEE,
2000.

[44] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-vis: A visual debugging tool for sequence-to-sequence
models. IEEE transactions on visualization and computer graphics,
25(1):353–363, 2019.

[45] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. Lstmvis: A tool
for visual analysis of hidden state dynamics in recurrent neural networks.
IEEE Transactions on Visualization and Computer Graphics, 24(1):667–
676, 2018.



[46] J. Talbot, B. Lee, A. Kapoor, and D. S. Tan. Ensemblematrix: interactive
visualization to support machine learning with multiple classifiers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1283–1292. ACM, 2009.

[47] S. Van Den Elzen and J. J. van Wijk. Baobabview: Interactive construc-
tion and analysis of decision trees. In 2011 IEEE Conference on Visual
Analytics Science and Technology (VAST), pp. 151–160. IEEE, 2011.

[48] G. Wang, X. Zhang, S. Tang, H. Zheng, and B. Y. Zhao. Unsupervised
clickstream clustering for user behavior analysis. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, pp. 225–
236. ACM, 2016.

[49] K. Wongsuphasawat and D. Gotz. Exploring flow, factors, and outcomes
of temporal event sequences with the outflow visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2659–2668, Dec
2012.

[50] Yelp dataset challenge, 2018. Available: https://www.yelp.com/
dataset/challenge, [Accessed: Nov 1, 2018].

[51] J. Zhao, Z. Liu, M. Dontcheva, A. Hertzmann, and A. Wilson. Matrixwave:
Visual comparison of event sequence data. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems, pp.
259–268. ACM, 2015.

https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge


A EVENT ALIGNMENT

When analyzing and interacting with prototype sequences, it is also
beneficial to assess the consistence between a prototype and its neighbor
instances. This is also the interest of some domain experts as well:
“How do I know if the model is getting the most representative prototype
from a group of sequences?”. The sequence encoder view projects
sequences as trajectories to allow users inspect the similarity between
the encoded sequential states between two sequences. However, it is
still difficult to know whether each individual event presented in the
prototype is representative or not. The alignment of each event can
be useful to help the user identify poorly representative events and
improve the consistency between the prototype and its neighbors.

For a prototype sequence {a(t)} and its neighboring sequence {b(t)},
we aim to measure the alignment between each pair of events a(i) and
b( j). We combine the sequential similarity and event similarity and
compute the alignment as:

α(a(i),b( j)) = simh(a
(i),b( j)) · sime(a(i),b( j)), (1)

where simh is the similarity function used in the ProSeNet:
exp(−dist2(h(i){a},h

( j)
{b})), and sime computes the similarity between

two events. simh can be interpreted as the contextual similarity of two
events within specific sequences. For example, the word “great” in
“great service” and “not so great” should not be treated as if they are the
same. The additional sime helps fine-grained alignment by exploiting
event similarity. For example, the encoded state sequence of “great
food” and “pizza is excellent” may align well at both ends of the two
phrases (“great” to “pizza”, “food” to “excellent”). However, we expect
“great” to align with “excellent”, and “food” to align with “pizza”. The
event similarity measure sime can be provided by the user to reflect
their interests, or computed based on the event embedding as learned
by the model.

B PROTOTYPE SEQUENCE NETWORK (PROSENET)
The prototype sequence network (ProSeNet) is a work in progress.
Due to page limit, we briefly introduce the architecture of ProSeNet,
formulate the learning objective and describe the training procedure
here in the appendix.

B.1 ProSeNet Architecture

Sequence
Encoder    

... ... ...

... ...

Linear

Softm
ax

Input
Sequence

Prototype
Layer    

Output
Probs

Fig. 7: The architecture of our proposed ProSeNet model. The model
consists of three parts, the recurrent sequence encoder network r, the
prototype layer p that contains k prototypes, the fully connected layer f ,
and a softmax layer for output probabilities in multi-class classification
tasks.

Let D = {((x(t))T
t=1,y)} be a labeled sequence dataset, where

T is the sequence length, x(t) ∈ Rn is the input vector at step t,
and y ∈ {1, . . . ,C} is the label of the sequence. We aim to learn
representative prototype sequences (not necessarily exist in the training
data) that can be used as classification references and analogical
explanations. For a new input sequence, its similarities with each
representative sequences are measured in the learned latent space.
Then, the prediction of the new instance can be derived and explained
by its similar prototype sequences.

The basic architecture of ProSeNet is similar to the one proposed
by Li et al. [26]. As shown in Fig. 7, the model consists of three
components: a sequence encoder r, a prototype layer p, and a fully
connected layer f .

For a given input sequence (x(t))T
t=1, the sequence encoder r

maps the entire sequence into a single embedding vector with fixed
length e = r((x(t))T

t=1), e ∈ Rm. The encoder could be any backbone
sequence learning models e.g., LSTM, Bidirectional LSTM (Bi-LSTM)
or GRU. In our experiments, the hidden state at the last step, h(T ), is
used as the embedding vector.

The prototype layer p contains k prototype vectors pi ∈ Rm, which
have the same length as e. The layer scores the similarity between e
and each prototype pi. In previous work [26], the squared L2 distance,
d2

i = ‖e−pi‖2
2, is directly used as the output of the layer. To improve

interpretability, we compute the similarity using:

ai = exp(−d2
i ),

which converts the distance to a score between 0 and 1. Zero can be
interpreted as the sequence embedding e being completely different
from the prototype vector pi, and one means they are identical.

With the computed similarity vector a = p(e), the fully connected
layer computes z = Wa, where W is a C× k weight matrix and C is
the output size (i.e., the number of classes in classification tasks).
To enhance interpretability, we constrain W to be non-negative. For
multi-class classification tasks, a softmax layer is used to compute the
predicted probability: ŷi = exp(zi)/∑

C
j=1 exp(z j).

B.2 Learning Objective
Our goal is to learn a ProSeNet that is both accurate and interpretable.
For accuracy, we minimize the cross-entropy loss on training set:

CE(Θ,D) = ∑
((x(t))T

t=1,y)∈D
y log(ŷ)+(1− y) log(1− ŷ),

where Θ is the set of all trainable parameters of the model.

Diversity. In our experiments, we found that when the number of
prototypes k is large (i.e., over two or three times the number of classes),
the training would often result in a number of similar or even duplicate
prototypes (i.e., some prototypes are very close to each other in the
latent space). It would be confusing to have multiple similar prototypes
in the explanations and also inefficient in utilizing model parameters.
We prevent such phenomenon through a diversity regularization term
that penalizes on prototypes that are close to each other:

Rd(Θ) =
k

∑
i=1

k

∑
j=i+1

max
(
0,dmin−‖pi−p j‖2

)2
,

where dmin is a threshold that classifies whether two prototypes are
close or not. We set dmin to 1.0 or 2.0 in our experiments. Rd is a soft
regularization that exerts a larger penalty on smaller pairwise distances.
By keeping prototypes distributed in the latent space, it also helps
produce a sparser similarity vector a.

Sparsity and non-negativity. In addition, to further enhance
interpretability, we add L1 penalty on the fully connected layer f , and
constrain the weight matrix W to be non-negative. The L1 sparsity
penalty and non-negative constraints on f help to learn sequence proto-
types that have more unitary and additive semantics for classification.

Clustering and evidence regularization. To improve interpretability,
Li et al. [26] also proposed two regularization terms to be jointly mini-
mized, the clustering regularization Rc and the evidence regularization
Re. Rc encourages a clustering structure in the latent space by minimiz-
ing the squared distance between an encoded instance and its closest
prototype:

Rc(Θ,D) = ∑
(x(t))T

t=1∈X

k
min
i=1

∥∥∥r
(
(x(t))T

t=1

)
−pi

∥∥∥2

2
,



where X is the set of all sequences in the training set D . The evidence
regularization Re encourages each prototype vector to be as close to an
encoded instance as possible:

Re(Θ,D) =
k

∑
i=1

min
(x(t))T

t=1∈X

∥∥∥pi− r
(
(x(t))T

t=1

)∥∥∥2

2
.

Full objective. To summarize, the loss function that we are minimizing
is as:

Loss(Θ,D) = CE(Θ,D)+λcRc(Θ,D)+λeRe(Θ,D)

+λdRd(Θ,D)+λl1‖W‖1,
(2)

where λc, λe, λd and λl1 are hyperparameters that control the strength
of the regularizations. The configuration of these hyperparameters
largely depends on the nature of the data and can be selected through
cross-validation. For each experiment in Section 4, we provide the
hyperparameter settings.

B.3 Optimizing the Objective
We use stochastic gradient descent (SGD) with mini-batch to minimize
the loss function on training data. Since the gradient of Re requires
the computation on the whole training set, we relax the minimization
to be only computed in every single batch. In this section, we mainly
discuss the prototype projection technique that we used to learn simple
and interpretable prototypes. The optimization procedure iteratively
alternates between the SGD and the prototype projection steps.

Prototype projection. Since the prototype vectors pi are representa-
tions in the latent space, they are not readily interpretable. Li et al. [26]
proposed to jointly train a decoder that translates the latent space to the
original input sequence space and thus making prototypes interpretable.
However, the decoder may not necessarily decode prototypes to mean-
ingful sequences. We propose a projection step during training that
assigns the prototype vectors with their closest sequence embedding in
the training set:

pi← argmin
e∈r(X )

‖e−pi‖2 . (3)

Each prototype vector pi is then associated with a prototype sequence
in the input space. The projection step is only performed every few
training epochs (we set to 4 in our experiments) to reduce compu-
tational cost. Compared with the original prototype network [26],
the projection step saves the efforts of jointly training a sequence
auto-encoder, which is computationally expensive. It also assures
each prototype to be an observed sequence, which guarantees that the
prototypes are meaningful in the real world.

Prototype simplification. Although the prototypes are already
readable after projecting to observed sequences in the training data, it
may still be difficult to comprehend a prototype sequence if it contains
insignificant or irrelevant noisy events.

Next, we introduce a procedure to simplify the projected prototype
sequences. That is, instead of projecting a prototype to a complete
observed sequence, we project it to a subsequence containing the
critical events. The projection step (Equation 3) now becomes:

pi← r(seqi),

seqi = argmin
seq∈sub(X )

(‖r(seq)−pi‖2) ,
(4)

where sub(X ) is the set of all possible subsequences of the data in
X , | · | computes the effective length of the subsequence. Note that
the complexity of the above operation is O(2T N), where N is the size
of training set and T is the maximum length of the sequences in X .
The cost of the brute-force computation grows exponentially with T ,
which is unacceptable even for relatively short sequences.

We use beam search to find an approximate solution [41]. Beam
search is a greedy breadth-first search algorithm which only keeps
w best candidates in each iteration. w is called the beam width. The

algorithm first selects w closest candidate sequences to prototype pi.
Then it generates all the possible subsequences which can be obtained
by removing one event from any of the w candidates. The score in
Equation 4 is calculated for each subsequence. The w subsequences
with the minimum scores are then kept as candidates to continue the
search in the next iteration. The subsequence with the minimum score
is the output. The complexity of the algorithm is now O(w ·T 2N). We
use w = 3 in our experiments.

B.4 Refining ProSeNet with User Knowledge
Next we discuss how users can refine a ProSeNet for better inter-
pretability and performance by validating and updating the prototypes,
esp. when they have certain expertise or knowledge in the problem
domain. Allowing users to validate and interact with the prototypes
can also increase their understanding of the model and the data, which
is the foundation of user trust [39].

We assume that the knowledge of a user can be explicitly expressed
in the form of input-output patterns which the user recognizes as
significant or typical in the domain (e.g., “food is good” is typically
a review with “positive” sentiment). These patterns can be regarded
as the “prototypes” that the user learned from his/her past experiences.
The refinement can thus be done by incorporating user-specified
prototypes as constraints in the model.

Based on the users’ past knowledge and observation on the model
outputs, there are three types of possible operations that they can
apply to the model: create new prototypes, revise or delete existing
prototypes. After changes are committed, the model is fine-tuned on
the training data to reflect the change.

When fine-tuning the model the prototypes should be fixed to reflect
the users’ constraints. Therefore we make the following revisions
to the optimization process described in Section 3.3: 1) instead of
updating the latent prototype vectors pi in the gradient descent step,
we use the updated sequence encoder r in each iteration to directly
set pi = r(seqi); 2) the prototype projection step is skipped. After
fine-tuning, the sequence encoder r learns better representations of
the data. The user can verify the updated results and repeat the process
until he/she is satisfied with the result.


	Introduction
	Related Work
	Sequential Data Visualization
	Deep Sequence Learning and Model Interpretation
	Interactive Machine Learning (IML)

	Background
	Interpretable Sequence Learning with ProSeNet
	Training ProSeNet with User-specified Prototypes

	Design Requirements
	ProtoSteer
	System Architecture
	User Interface Overview
	Prototype Overview
	Visualize Model Difference
	Editing History
	Sequence Encoder View
	User Interactions

	Evaluation
	Yelp Review Texts
	Vehicle Fault Logs
	Expert Interview

	Limitations and future work
	Conclusion
	Event Alignment
	Prototype Sequence Network (ProSeNet)
	ProSeNet Architecture
	Learning Objective
	Optimizing the Objective
	Refining ProSeNet with User Knowledge


